991 resultados para HORMONE-BINDING GLOBULIN


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low levels of sex hormone-binding globulin (SHBG) are considered to be an indirect index of hyperinsulinemia, predicting the later onset of diabetes mellitus type 2. In the insulin resistance state and in the presence of an increased pancreatic ß-cell demand (e.g. obesity) both absolute and relative increases in proinsulin secretion occur. In the present study we investigated the correlation between SHBG and pancreatic ß-cell secretion in men with different body compositions. Eighteen young men (30.0 ± 2.4 years) with normal glucose tolerance and body mass indexes (BMI) ranging from 22.6 to 43.2 kg/m2 were submitted to an oral glucose tolerance test (75 g) and baseline and 120-min blood samples were used to determine insulin, proinsulin and C-peptide by specific immunoassays. Baseline SHBG values were significantly correlated with baseline insulin (r = -0.58, P<0.05), proinsulin (r = -0.47, P<0.05), C-peptide (r = -0.55, P<0.05) and also with proinsulin at 120 min after glucose load (r = -0.58, P<0.05). Stepwise regression analysis revealed that proinsulin values at 120 min were the strongest predictor of SHBG (r = -0.58, P<0.05). When subjects were divided into obese (BMI >28 kg/m2, N = 8) and nonobese (BMI £25 kg/m2, N = 10) groups, significantly lower levels of SHBG were found in the obese subjects. The obese group had significantly higher baseline proinsulin, C-peptide and 120-min proinsulin and insulin levels. For the first time using a specific assay for insulin determination, a strong inverse correlation between insulinemia and SHBG levels was confirmed. The finding of a strong negative correlation between SHBG levels and pancreatic ß-cell secretion, mainly for the 120-min post-glucose load proinsulin levels, reinforces the concept that low SHBG levels are a suitable marker of increased pancreatic ß-cell demand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vertebrate species, testosterone seems to inhibit spermatogonial differentiation and proliferation. However, this androgen can also be converted, via aromatase, into estrogen which stimulates spermatogonial differentiation and mitotic activity. During seasonal spermatogenesis of adult bullfrogs Lithobates catesbeianus, primordial germ cells (PGCs) show enhanced testosterone cytoplasm immunoexpression in winter; however, in summer, weak or no testosterone immunolabelling was observed. The aim of this study was to confirm if PGCs express stem cell markers-alkaline phosphatase (AP) activity and GFRα1 (glial-cell-line-derived neurotrophic factor)-and verify whether testosterone is maintained in these cells by androgen receptors (ARs) and/or sex hormone-binding globulin (SHBG) in winter. Furthermore, regarding the possibility that testosterone is converted into estrogen by PGCs in summer, the immunoexpression of estrogen receptor (ER)β was investigated. Bullfrog testes were collected in winter and in summer and were embedded in glycol methacrylate for morphological analyses or in paraffin for the histochemical detection of AP activity. GFRα1, AR, SHBG and ERβ expression were detected by Western blot and immunohistochemical analyses. The expression of AP activity and GFRα1 in the PGCs suggest that these cells are spermatogonial stem cells. In winter, the cytoplasmic immunoexpression of ARs and SHBG in the PGCs indicates that testosterone is maintained by these proteins in these cells. The cytoplasmic immunoexpression of ERβ, in summer, also points to an ER-mediated action of estrogen in PGCs. The results indicate a participation of testosterone and estrogen in the control of the primordial spermatogonia during the seasonal spermatogenesis of L. catesbeianus. © 2012 S. Karger AG, Basel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Corticosteroid-binding globulin is a 383-amino acid glycoprotein that serves a hormone transport role and may have functions related to the stress response and inflammation. We describe a 39-member Italian-Australian family with a novel complete loss of function (null) mutation of the corticosteroid-binding globulin gene. A second, previously described, mutation (Lyon) segregated independently in the same kindred. The novel exon 2 mutation led to a premature termination codon corresponding to residue -12 of the procorticosteroid-binding globulin molecule (c.121G->A). Among 32 family members there were 3 null homozygotes, 19 null heterozygotes, 2 compound heterozygotes, 3 Lyon heterozygotes, and 5 individuals without corticosteroid-binding globulin mutations. Plasma immunoreactive corticosteroid-binding globulin was undetectable in null homozygotes, and mean corticosteroid-binding globulin levels were reduced by approximately 50% at 18.7 ± 1.3 µg/ml (reference range, 30–52 µg/ml) in null heterozygotes. Morning total plasma cortisol levels were less than 1.8 µg/dl in homozygotes and were positively correlated to the plasma corticosteroid-binding globulin level in heterozygotes. Homozygotes and heterozygote null mutation subjects had a high prevalence of hypotension and fatigue. Among 19 adults with the null mutation, the systolic blood pressure z-score was 12.1 ± 3.5; 11 of 19 subjects (54%) had a systolic blood pressure below the third percentile. The mean diastolic blood pressure z-score was 18.1 ± 3.4; 8 of 19 subjects (42%) had a diastolic blood pressure z-score below 10. Idiopathic chronic fatigue was present in 12 of 14 adult null heterozygote subjects (86%) and in 2 of 3 null homozygotes. Five cases met the Centers for Disease Control criteria for chronic fatigue syndrome. Fatigue questionnaires revealed scores of 25.1 ± 2.5 in 18 adults with the mutation vs. 4.2 ± 1.5 in 23 healthy controls (P < 0.0001). Compound heterozygosity for both mutations resulted in plasma cortisol levels comparable to those in null homozygotes. Abnormal corticosteroid-binding globulin concentrations or binding affinity may lead to the misdiagnosis of isolated ACTH deficiency. The mechanism of the association between fatigue and relative hypotension is not established by these studies. As idiopathic fatigue disorders are associated with relatively low plasma cortisol, abnormalities of corticosteroid-binding globulin may be pathogenic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucocorticoids are pivotal for adipose tissue development. Rodent studies suggest that corticosteroid-binding globulin (CBG) modulates glucocorticoid action in adipose tissue. In humans, both genetic CBG deficiency and suppressed CBG concentrations in hyperinsulinemic states are associated with obesity. We hypothesized that CBG deficiency in humans modulates the response of human preadipocytes to glucocorticoids, predisposing them to obesity. We compared normal preadipocytes with subcultured preadipocytes from an individual with the first ever described complete deficiency of CBG due to a homozygous null mutation. CBG-negative preadipocytes proliferated more rapidly and showed greater peroxisome proliferator-activated receptor-gamma-mediated differentiation than normal preadipocytes. CBG was not expressed in normal human preadipocytes. Glucocorticoid receptor number and binding characteristics and 11beta-hydroxysteroid dehydrogenase activity were similar for CBG-negative and normal preadipocytes. We propose that the increased proliferation and enhanced differentiation of CBG-negative preadipocytes may promote adipose tissue deposition and explain the obesity seen in individuals with genetic CBG deficiency. Furthermore, these observations may be relevant to obesity occurring with suppressed CBG concentrations associated with hyperinsulinemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Infected pancreatic necrosis is the main cause of death in patients with acute pancreatitis, and therefore its early prediction is of utmost importance. Endogenous cortisol metabolism plays a basic role both in the course of acute pancreatitis and in the process of infection. The purpose of this study was to analyze corticosteroid-binding globulin (CBG), total cortisol, calculated free cortisol and adrenocorticotropic hormone as potential early predictors in order to differentiate between infected pancreatic necrosis and sterile pancreatic necrosis in patients with acute pancreatitis. MATERIAL AND METHODS: Serum levels of CBG, total cortisol, calculated free cortisol, and plasma levels of adrenocorticotropic hormone were determined in 109 consecutive patients with acute pancreatitis. C-reactive protein was measured as the control parameter. Thirty-five patients developed necrotizing pancreatitis and 10 developed infection of the necrosis. Blood was monitored for 6 days after the onset of pain; 30 healthy individuals served as controls. RESULTS: Of all parameters only CBG showed a significant difference (p = 0.0318) in its peak levels measured in the first 48 h in patients with sterile (26.5 microg/ml, range 21.3-34.7) and infected (16.0 microg/ml, range 15.2-25.0) necrosis at a cut-off level of 16.8 microg/ml. That difference was further preserved for the first 6 days after onset of pain. CONCLUSIONS: In our group of patients, a decreased CBG level below 16.8 g/ml within the initial 48 h of acute pancreatitis was an early predictor of later infected pancreatic necrosis, with a positive predictive value of 100% and a negative predictive value of 87.5%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple theoretical framework is presented for bioassay studies using three component in vitro systems. An equilibrium model is used to derive equations useful for predicting changes in biological response after addition of hormone-binding-protein or as a consequence of increased hormone affinity. Sets of possible solutions for receptor occupancy and binding protein occupancy are found for typical values of receptor and binding protein affinity constants. Unique equilibrium solutions are dictated by the initial condition of total hormone concentration. According to the occupancy theory of drug action, increasing the affinity of a hormone for its receptor will result in a proportional increase in biological potency. However, the three component model predicts that the magnitude of increase in biological potency will be a small fraction of the proportional increase in affinity. With typical initial conditions a two-fold increase in hormone affinity for its receptor is predicted to result in only a 33% increase in biological response. Under the same conditions an Ii-fold increase in hormone affinity for receptor would be needed to produce a two-fold increase in biological potency. Some currently used bioassay systems may be unrecognized three component systems and gross errors in biopotency estimates will result if the effect of binding protein is not calculated. An algorithm derived from the three component model is used to predict changes in biological response after addition of binding protein to in vitro systems. The algorithm is tested by application to a published data set from an experimental study in an in vitro system (Lim et al., 1990, Endocrinology 127, 1287-1291). Predicted changes show good agreement (within 8%) with experimental observations. (C) 1998 Academic Press Limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

GH-binding protein (GHBP) corresponds to the extracellular domain of the GH receptor (GHR) and has been shown to be closely related to body fat. This study aimed to examine the inter-relationship between GHBP, leptin and body fat, and to test the hypothesis that GHBP is modified by GH replacement in GH-deficient adults and predicts IGF-I response. Twenty adults, mean age 47 years (range 20-69) with proven GH deficiency were randomly allocated to either GH (up to 0.25 U/kg/week in daily doses) or placebo for 3 months before cross-over to the opposite treatment. Plasma GHBP and leptin were measured at baseline and 2, 4, 8 and 12 weeks after each treatment. Whole body composition was measured at baseline by dual-energy X-ray absorptiometry (DEXA). There was a strong correlation between baseline leptin and GHBP (r = 0.88, P < 0.0001) and between baseline GHBP and percentage body fat, (r = 0.83, P < 0.0001). Mean GHBP levels were higher on GH compared with placebo, 1.53 +/- 0.28 vs 1.41 +/- 0.25 nM, P = 0.049. There was no correlation between baseline IGF-I and GHBP (r = -0.049, P = 0.84), and GHBP did not predict IGF-I response to GH replacement. The close inter-relationship between GHBP, leptin and body fat suggests a possible role for GHBP in the regulation of body composition. GHBP is increased by GH replacement in GH-deficient adults, but does not predict biochemical response to GH replacement. (C) 1999 Churchill Livingstone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A randomised crossover dietary intervention study was performed to evaluate the effects of replacing meat protein in the diet with a soyabean product, tofu, on blood concentrations of testosterone, dihydrotestosterone, androstanediol glucuronide, oestradiol, sex hormone-binding globulin (SHBG), and the free androgen index (total testosterone concentration/SHBG concentration x 100; FAI). Forty-two healthy adult males aged 35-62 years were studied. Diets were isoenergetic, with either 150 g lean meat or 290 g tofu daily providing an equivalent amount of macronutrients, with only the source of protein differing between the two diets. Each diet lasted for 4 weeks, with a 2-week interval between interventions. Fasting blood samples were taken between 07.00 and 09.30 hours. Urinary excretion of genistein and daidzein was significantly higher after the tofu diet (P

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To date, measurements of GH-binding protein (GHBP) during human pregnancy have been carried out using;assays susceptible to interference by the elevated levels of human placental GH typical of late gestation. We recruited a large cohort of pregnant women (n = 140) for serial measurements of GHBP and used the ligand immunofunctional assay for GHBP. For normal gravidas, GHBP levels fell throughout gestation. Mean levels were 1.07 nmol/L (SE = 0.18) in the first trimester, 0.90 nmol/L (SE = 0.08) at 18-20 weeks, 0.73 nmol/L (SE = 0.05) at 28-30 weeks, and 0.62 nmol/L (SE = 0.06) at 36-38 weeks. GHBP levels in the first trimester correlated significantly with maternal body mass index (r = 0.58; P < 0.01). GHBP levels in pregnancies complicated by noninsulin-dependent diabetes mellitus (NIDDM) were substantially elevated at all gestational ages. The mean value in the first quarter (2.29 nmol/L) was more than double the normal mean (P < 0.01). In contrast, patients with insulin-dependent diabetes mellitus (IDDM) showed reduced GHBP concentrations at 36-38 weeks. The correlation between body mass index and GHBP is consistent with a metabolic role for GHBP during pregnancy, as is the dramatic elevation in GHBP observed in cases of NIDDM. At 36 weeks gestation, GHBP was significantly elevated (P < 0.01) in those women whose neonates had low birth weight (

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective To explore whether abnormalities in growth hormone binding protein (GHBP) may underlie the growth restriction associated with fetal aneuploidy. Design A retrospective casecontrol study. Setting Monash Medical Centre, Clayton, Victoria, Australia. Population Twenty-one trisomy 18, and 30 trisomy 21 pregnancies, and 170 chromosomally normal pregnancies at 15-18 weeks of gestation representing three to five controls per case matched for source, gestation and duration of storage. Methods GHBP was measured using a ligand immunofunctional assay. Results In the chromosomally normal pregnancies GHBP levels decreased slightly but significantly across the narrow gestational window studied. Compared with controls, levels of GHBP, expressed as median (95% CI) multiples of the median (MoM), in the trisomy 21 pregnancies were similar, 1.0 (0.92-1.39) MoM and 1.27 (1.04-1.50) MoM, respectively; P = 0.061 (Mann-Whitney CI test) but were significantly reduced in the trisomy 18 pregnancies, 0.68 (0.51-0.84) MoM; P = 0.0014 (Mann-Whitney U test). Conclusions These data suggest that decreased levels of maternal growth hormone binding protein, and by implication growth hormone receptor complement, may underlie the early severe growth restriction that is characteristic of trisomy 18.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transthyretin is an essential protein responsible for the transport of thyroid hormones and retinol in human serum and is also implicated in the amyloid diseases familial amyloidotic polyneuropathy and senile systemic amyloidosis. Its folding properties and stabilization by ligands are of current interest due to their importance in understanding and combating these diseases, Here we report the solid phase synthesis of the monomeric unit of a transthyretin analog (equivalent to 127 amino acids) using t-Boc chemistry and peptide ligation and its folding to form a functional 54-kDa tetramer, The monomeric unit of the protein was chemically synthesized in three parts (positions 1-51, 54-99, and 102-127) and ligated using a chemoselective thioether ligation chemistry. The synthetic protein was folded and assembled to a tetrameric structure in the presence of transthyretin's native ligand, thyroxine, as shown by gel filtration chromatography, native gel electrophoresis, transthyretin antibody recognition, and thyroid hormone binding. Other folding products included a high molecular weight aggregate as well as a transient dimeric species. This represents one of the largest macromolecules chemically synthesized to date and demonstrates the potential of protein chemical synthesis for investigations of protein-ligand interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasma concentrations of growth hormone (GH) were measured in the brushtail possum (Trichosurus vulpecula) pouch young from 25 through to 198 days post-partum (n=71). GH concentrations were highest early in pouch life (around 100 ng/ml), and thereafter declined in an exponential fashion to reach adult concentrations (10.8 +/- 1.8 ng/ml; n=21) by approximately 121-145 days post-partum, one to two months before the young is weaned. Growth hormone-binding protein (GHBP), which has been shown to modify the cellular actions of GH in eutherian mammals, was identified for the first time in a marsupial. Based on size exclusion gel filtration, possum GHBP had an estimated molecular mass of approximate to 65 kDa, similar to that identified in other mammalian species, and binding of I-125-labelled human GH (hGH) was displaced by excess hGH (20 mug). An immunoprecipitation method, in which plasma GHBP was rendered polyethylene glycol precipitable with a monoclonal antibody to the rabbit GHBP/GH receptor (MAb 43) and labelled with I-125-hGH, was used to quantitate plasma GHBP by Scatchard analysis in the developing (pooled plasma samples) and adult (individual animals) possums. Binding affinity (K-a) values in pouch young aged between 45 and 54 and 144 and 153 days post-partum varied between 1.0 and 2.4 x 10(9)/M, which was slightly higher than that in adult plasma (0.96 +/- 0.2 x 10(9)/M, n = 6). Binding capacity (B-max) values increased from non-detectable levels in animals aged 25-38 days post-partum to reach concentrations around half that seen in the adult (1.4 +/- 0.2 x 10(-9) M) by about 117 days post-partum and remained at this level until 153 days post-partum. Therefore, in early pouch life when plasma GH concentrations are highest, the very low concentrations of GHBP are unlikely to be important in terms of competing with GH-receptor for ligand or altering the half-life of circulating GH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transthyretin (TTR) is a 55 kDa protein responsible for the transport of thyroid hormones and retinol in human serum. Misfolded forms of the protein are implicated in the amyloid diseases familial amyloidotic polyneuropathy and senile systemic amyloidosis. Its folding properties and stabilization by ligands are of current interest due to their importance in understanding and combating these diseases. To assist in such studies we developed a method for the solid phase synthesis of the monomeric unit of a TTR analogue and its folding to form a functional 55 kDa tetramer. The monomeric unit of the protein was chemically synthesized in three parts, comprising amino acid residues 151, 5499 and 102127, and ligated using chemoselective thioether ligation chemistry. The synthetic protein was folded and assembled to a tetrameric structure in the presence of the TTRs native ligand, thyroxine, as shown by gel filtration chromatography, native gel electrophoresis, TTR antibody recognition and thyroid hormone binding. In the current study the solution structure of the first of these fragment peptides, TTR(151) is examined to determine its intrinsic propensity to form beta-sheet structure, potentially involved in amyloid fibril formation by TTR. Despite the presence of extensive beta-structure in the native form of the protein, the Nterminal fragment adopts an essentially random coil conformation in solution.