955 resultados para HORMONE REPLACEMENT THERAPY
Resumo:
We report a prospective, randomized, multi-center, open-label 2-year trial of 81 postmenopausal women aged 53-79 years with at least one minimal-trauma vertebral fracture (VF) and low (T-score below 2) lumbar bone mineral density (BMD). Group HRT received piperazine estrone sulfate (PES) 0.625 - 1.25 mg/d +/- medroxyprogesterone acetate (MPA) 2.5 - 5 mg/d,- group HRT/D received HRT plus calcitriol 0.25 mug bd. All with a baseline dietary calcium (Ca) of < I g/d received Ca carbonate 0.6 g nocte. Final data were on 66 - 70 patients. On HRT/D, significant (P < 0.001) BNID increases from baseline by DXA were at total body - head, trochanter, Ward's, total hip, inter-trochanter and femoral shaft (% group mean Delta 4.2, 6.1, 9.3. 3.7. 3.3 and 3.3%, respectively). On HRT, at these significant Deltas were restricted to the trochanter and sites. si Wards. Significant advantages of HRT/D over HRT were in BMD of total body (- head), total hip and trochanter (all P = 0.01). The differences in mean Delta at these sites were 1.3, 2.6 and 3.9%. At the following, both groups Improved significantly -lumbar spine (AP and lateral), forearm shaft and ultradistal tibia/fibula. The weightbearing, site - specific benefits of the combination associated with significant suppression of parathyroid hormone-suggest a beneficial effect on cortical bone. Suppression of bone turnover was significantly greater on HRT/D (serum osteocalcin P = 0.024 and urinary hydroxyproline/creatinine ratio P = 0.035). There was no significant difference in the number of patients who developed fresh VFs during the trial (HRT 8/36, 22%; HRT/D 4/34, 12% - intention to treat); likewise in the number who developed incident nonvertebral fractures. This Is the first study comparing the 2 treatments in a fracture population. The results indicate a significant benefit of calcitriol combined with HRT on total body BMD and on BNID at the hip, the major site of osteoporotic fracture.
Resumo:
The risk of breast cancer arises from a combination of genetic susceptibility and environmental factors. Recent studies show that type and duration of use of hormone replacement therapy affect a women's risk of developing breast cancer.1-7 The women's health initiative trial was stopped early because of excess adverse cardiovascular events and invasive breast cancer with oestrogen and progestogen.6 The publicity increased public awareness of the risks of hormone replacement therapy, and this was heightened by the publication of the million women study.2 However, the recently published oestrogen only arm of the women's health initiative trial suggests that this formulation may reduce the risk of breast cancer.8 To help make sense of the often confusing information,9 women and clinicians need individual rather than population risk data. We have produced estimates that can be used to calculate individual risk for women living up to the age of 79 and suggest the risk
Resumo:
Numerous studies have documented increased breast cancer risks with hormone replacement therapy (HRT), but these do not give a woman her specific absolute risk for the remainder of her life. This article estimates the magnitude of the effect of HRT on breast cancer incidence in California and calculates a woman's cumulative risk of breast cancer with different formulations and durations of HRT use. The effects of HRT on the underlying breast cancer incidence were estimated using the attributable fraction method, applying HRT prevalence data from the 2001 California Health Interview Survey and published rates of higher relative risk (RR) from HRT use from the Women's Health Initiative (WHI) study and Million Women's Survey (MWS). The annual number of breast cancers potentially attributable to HRT in California was estimated, along with individual cumulative risk of breast cancer for various ages to 79 years according to HRT use, duration, and formulation. Using the WHI data, 829 of 19,000 breast cancers (4.3%) in California may be attributable to HRT This figure increases to 3401 (17.4%) when the MWS RRs are applied. Use of estrogen-only HRT or short-term (approximately 5 years) use of combined HRT has a minimal effect on the cumulative risk calculated to the age of 79 years; application of the MWS data to a Californian woman commencing HRT at the age of 50 years (no HRT, 8.5%; estrogen only, 8.6%; combined, 9.1%). Prolonged (approximately 10 years) use of combined HRT increases the cumulative risk to 10.3%. This article demonstrates that HRT will generate a small additional risk of breast cancer in an individual. The reduction in perimenopausal symptoms may be considered sufficient to warrant this extra risk. However, this view needs to be balanced because the small increases in individual risk will be magnified, producing a noticeable change in population cancer caseload where HRT use is high.
Resumo:
Objective: The study was designed to evaluate the effects of strength training (ST) on the bone mineral density (BMD) of postmenopausal women without hormone replacement therapy. Method: Subjects were randomized into untrained (UN) or trained (TR) groups. The TR group exercised three ST sessions per week for 24 weeks, and body composition, muscular strength, and BMD of the lumbar spine and femur neck were evaluated. Results: Body weight, mass index, and fat percentage were lower after 24 weeks only in the TR group (p < .05). SR also improved the one repetition maximum test in 46% and 39% of upper and lower limbs, respectively. The percentage of demineralization was higher in the UN group than in the TR group at the lumbar spine and femoral neck (p < .05). Discussion: Results indicated that 24 weeks of ST improved body composition parameters, increased muscular strength, and preserved BMD in postmenopausal women.
Resumo:
All patients with known pituitary or hypothalamic disease, or surgery or radiation treatment to the area could have growth hormone deficiency. Growth hormone deficiency in adults is an approved indication for recombinant growth hormone treatment in Australia. Diagnosis currently requires measurement of growth hormone response to insulin hypoglycaemia. Many patients have dramatic improvements in body composition, functional capacity and psychological wellbeing following recombinant human growth hormone replacement. (author abstract)
Resumo:
INTRODUCTION: In the postmenopausal period, an average of 25% of women will present symptomatic ovarian failure requiring hormonal replacement therapy. Estrogen can relieve vasomotor symptoms. Hormonal replacement therapy is generally not recommended for breast cancer patients due to the potential risk of tumor recurrence. To answer the questions about the safety of hormonal replacement therapy in this subgroup of women, it is necessary to establish the acceptance of treatment. METHODS: Between September 1998 and February 2001, a cohort of 216 breast cancer patients were asked to complete a questionnaire. All patients had completed their treatment and were informed about survival rates after breast cancer and hormonal replacement therapy. RESULTS: Among the 216 patients, 134 (62%) would refuse hormonal replacement therapy. A hundred patients were afraid of relapse (74.6%). Adjuvant tamoxifen therapy was the only statistically significant variable (70.3% versus 29.7% p=0.003). Understanding clinical stage (p= 0.045) and type of medical assistance (private versus public , p=0.033) also seemed to influence the decision. Early stage disease (p= 0.22), type of surgical procedure (radical versus conservative, p=0.67), adjuvant chemotherapy (p=0.082) or marital status (p=0.98 ) were not statistically significant in decision making. Several patients submitted to adjuvant chemotherapy (41.6%) would accept hormonal replacement therapy under medical supervision, as did most of advanced clinical stage patients (58.3%; p=0.022). CONCLUSION: There is a high level of rejection for hormonal replacement therapy among breast cancer patients when current data on tumor cure rates, and potential risks of estrogen use is available. Adverse effects of tamoxifen in the adjuvant setting may be the reason for refusal of hormonal replacement therapy .
Resumo:
The use of testosterone in older men, known as male hormonal replacement therapy or androgen replacement therapy, has become of increasing interest to both the medical and lay communities over the past decade. Even though the knowledge of the potential benefits and risks of male Androgen Replacement Therapy has increased dramatically, there is still much that needs to be determined. Although there are a number of potential benefits of male Androgen Replacement Therapy and data concerning clinical effects of such replacement have accumulated, as yet there have not been any large multicenter randomized controlled trials of this therapy. It is the purpose of this article to review what is currently known about the possible risks and benefits of male Androgen Replacement Therapy by discussing the clinical trials to date.
Resumo:
OBJECTIVE: To report the effects of 2 regimens of hormone replacement therapy during the postmenopausal period on the profile of the major lipoprotein subfractions (HDL, LDL, and VLDL). METHODS: We carried out a cohort study in 38 postmenopausal patients who were starting their hormone replacement therapy due to gynecological indications, for a period of 12 weeks. Analysis of lipoprotein subclasses was performed through nuclear magnetic resonance spectroscopy. RESULTS: Hormone replacement therapy cause an increase in the proportion of larger subfractions of VLDL and HDL (p=0.008 and 0.03, respectively) and in the proportion of larger particles of VLDL due to a 36% increase in the levels of larger particles (p=0.004), concomitantly with a 15% reduction in the levels of smaller particles (p=0.04). In regard to HDL, the increase occurred only a 17% increase in the levels of larger particles (p=0.002). No significant change occurred in the distribution pattern of LDL subfractions. CONCLUSION: The proportion of larger subfractions of VLDL and HDL increases after hormone replacement therapy. The increase in the proportion of larger particles of VLDL occurs due to an increase in the levels of the larger subclasses concomitantly with a reduction in the smaller particles. However, an increase in the proportion of larger particles of HDL occurs only due to an increase in the levels of the larger subfractions.
Resumo:
INTRODUCTION Associations of hormone-receptor positive breast cancer with excess adiposity are reasonably well characterized; however, uncertainty remains regarding the association of body mass index (BMI) with hormone-receptor negative malignancies, and possible interactions by hormone replacement therapy (HRT) use. METHODS Within the European EPIC cohort, Cox proportional hazards models were used to describe the relationship of BMI, waist and hip circumferences with risk of estrogen-receptor (ER) negative and progesterone-receptor (PR) negative (n = 1,021) and ER+PR+ (n = 3,586) breast tumors within five-year age bands. Among postmenopausal women, the joint effects of BMI and HRT use were analyzed. RESULTS For risk of ER-PR- tumors, there was no association of BMI across the age bands. However, when analyses were restricted to postmenopausal HRT never users, a positive risk association with BMI (third versus first tertile HR = 1.47 (1.01 to 2.15)) was observed. BMI was inversely associated with ER+PR+ tumors among women aged ≤49 years (per 5 kg/m2 increase, HR = 0.79 (95%CI 0.68 to 0.91)), and positively associated with risk among women ≥65 years (HR = 1.25 (1.16 to 1.34)). Adjusting for BMI, waist and hip circumferences showed no further associations with risks of breast cancer subtypes. Current use of HRT was significantly associated with an increased risk of receptor-negative (HRT current use compared to HRT never use HR: 1.30 (1.05 to 1.62)) and positive tumors (HR: 1.74 (1.56 to 1.95)), although this risk increase was weaker for ER-PR- disease (Phet = 0.035). The association of HRT was significantly stronger in the leaner women (BMI ≤22.5 kg/m2) than for more overweight women (BMI ≥25.9 kg/m2) for, both, ER-PR- (HR: 1.74 (1.15 to 2.63)) and ER+PR+ (HR: 2.33 (1.84 to 2.92)) breast cancer and was not restricted to any particular HRT regime. CONCLUSIONS An elevated BMI may be positively associated with risk of ER-PR- tumors among postmenopausal women who never used HRT. Furthermore, postmenopausal HRT users were at an increased risk of ER-PR- as well as ER+PR+ tumors, especially among leaner women. For hormone-receptor positive tumors, but not for hormone-receptor negative tumors, our study confirms an inverse association of risk with BMI among young women of premenopausal age. Our data provide evidence for a possible role of sex hormones in the etiology of hormone-receptor negative tumors.
Resumo:
Hormone replacement therapy (HRT) is an established approach for the treatment and the prevention of osteoporosis. Many studies with bone mineral density as primary outcome have shown significant efficacy. Observational studies have indicated a significant reduction of hip fracture risk in cohorts of women who maintained HRT therapy. The Women's Health Initiative is the first prospective randomised controlled study which showed a positive effect of HRT in terms of reduction of vertebral and hip fractures risk. Unfortunately, this study has been interrupted after 5.2 years because of the unsupportable increase of risk of cardiovascular disease and breast cancer. Compliance with HRT, however, is typically poor because of the potential side effects and possible increased risk of breast or endometrial cancer. Nevertheless, there is now evidence that lower doses of estrogens in elderly women may prevent bone loss while minimizing the side effects seen with higher doses. Combination therapies using low doses estrogen should probably be reserved for patients who continue to fracture on single therapy. Selective estrogen receptor modulators (SERMs) are very interesting drugs. The goal of these agents is to maximize the beneficial effect of estrogen on bone and to minimize or antagonize the deleterious effects on the breast and endometrium. Raloxifene, approved for the prevention and the treatment of osteoporosis, has been shown to reduce the risks of vertebral fracture in large clinical trials. However, they don't reduce non vertebral fractures. Tibolone is a synthetic steroid that increased bone mineral density at lumbar spine and femoral neck. But no trial has been performed with fractures as end point.
Resumo:
Aims The aim of this study was to evaluate the effect of hormone replacement therapy (HRT) on coronary vasomotor function in post-menopausal women (PM) with medically treated cardiovascular risk factors (RFs) in a cross-sectional and a longitudinal follow-up (FU) study. Methods and results Myocardial blood flow (MBF) response to cold pressor testing (CPT) and during pharmacologically induced hyperaemia was measured with positron emission tomography in pre-menopausal women (CON), in PM with HRT and without HRT, and repeated in PM after a mean FU of 24 +/- 14 months. When compared with CON at baseline, the endothelium-related change in MBF (DeltaMBF) to CPT progressively declined in PM with HRT and without HRT (0.35 +/- 0.23 vs. 0.24 +/- 0.20 and 0.16 +/- 0.12 mL/g/min; P = 0.171 and P = 0.021). In PM without HRT and in those with HRT at baseline but with discontinuation of HRT during FU, the endothelium-related DeltaMBF to CPT was significantly less at FU than at baseline (0.05 +/- 0.19 vs. 0.16 +/- 0.12 and -0.03 +/- 0.14 vs. 0.25 +/- 0.18 mL/g/min; P = 0.023 and P = 0.001), whereas no significant change was observed in PM with HRT (0.19 +/- 0.22 vs. 0.23 +/- 0.22 mL/g/min; P = 0.453). Impaired hyperaemic MBFs when compared with CON were not significantly altered from those at baseline exam. Conclusion Long-term administration of oestrogen may contribute to maintain endothelium-dependent coronary function in PM with medically treated cardiovascular RFs.