17 resultados para HORMIGON
Resumo:
Este proyecto caracteriza la logística del sector cemento en Colombia al identificar y describir los principales actores, procesos y materiales involucrados en la cadena de suministros del sector. Este documento compila la información logística relevante para la producción de cemento en Colombia. Esta información se obtuvo sintetizando estudios y reportes acerca de las prácticas logísticas y las condiciones en las que éstas se desarrollan. Adicionalmente se realizaron visitas empresariales en diferentes plantas de producción de cemento y entrevistas semiestructuradas a expertos en logística de los diferentes eslabones. Con la información primaria y secundaria se caracteriza del producto, las materias primas e insumos necesarios para la producción de cemento. Se identifican los principales agentes que componen el sector y se describen los procesos logísticos relacionados con el cemento en cada uno de ellos. Para las cementeras y canteras se hace un análisis de entradas y salidas de los procesos principales de su cadena de valor. Adicionalmente se expone la operación de transporte como un elemento clave en el sector y se presentan las simulaciones de fletes, rutas y cubicaje. Por último, se incluye un caso de optimización de transporte aplicando teorías de investigación de operaciones.
Resumo:
Es una realidad cada vez más aceptada que la durabilidad del hormigón es una propiedad igual de importante que la resistencia mecánica o la estabilidad de volumen. No es el objeto del presente trabajo ahondar en las causas de esta evidencia sino en contribuir a hacer del diseño de la durabilidad una materia incorporada al quehacer diario de los técnicos y especialistas. Solo si la durabilidad de una estructura se puede proyectar y verificar, será posible conseguir vidas útiles con una cierta garantía o seguridad en que se alcanzarán los periodos de servicio que se especifiquen. En el diseño de la durabilidad se ha dedicado mucho tiempo en el pasado a aclarar los mecanismos de ataque (por ejemplo: por sulfatos o por reacción árido-álcali) o como realizar ensayos acelerados en estos casos y también en el caso concreto de la corrosión de la armadura. En el caso de la corrosión, la envergadura de los costes de reparaciones ha estimulado la publicación de modelos y ensayos que, si bien necesitan todavía calibración, al menos suponen una cierta ayuda para el proyectista.
Resumo:
Los puentes con sección mixta de hormigon y acero son, a dia de hoy, una de las tipologias mas recurrentes por las diversas, y ya conocidas, ventajas que ofrecen en determinadas circunstancias. Resulta por tanto necesario, y de interes, estar actualizado y conocer el marco normativo que rige el diseño y proyecto de este tipo de puentes. El planteamiento normativo referente al desarrollo de proyectos de puentes mixtos se encuentra actualmente en una fase de transicion durante la cual se llevaria a cabo la redaccion de una nueva “Instruccion para el Proyecto de Puentes Mixtos”, la cual incorporaria directamente las prescripciones del Eurocodigo 4. Dicha instruccion sustituira a las actualmente vigentes “Recomendaciones para el Proyecto de Puentes Mixtos para Carretera (RPX-95)”. Por otra parte, en el ano 2011, se incorpora a la reglamentacion la “Instruccion de Acero Estructural (EAE)” en la cual se establecen criterios de ambito comun con los dos documentos anteriormente citados. La coyuntura normativa descrita en el parrafo anterior hace que resulte de gran interes realizar un estudio comparativo entre las normativas actualmente vigentes: - Eurocodigo 4: “Proyecto de estructuras mixtas de acero y hormigon”-RPX-95: “Recomendaciones para el Proyecto de Puentes Mixtos para Carretera”-EAE: “Instruccion de Acero Estructural”. Uno de los principales objetivos de este estudio es poder extraer conclusiones interesantes de cara a la implementacion definitiva de los Eurocodigos en el marco normativo espanol, hecho que se preve que se produzca en un futuro cercano, alrededor del ano 2018. Dentro de la amplia casuistica que hace referencia al proyecto de puentes mixtos, el presente estudio se centra en las metodologias de analisis referentes a la rigidizacion de fondos comprimidos y almas. Por tanto, se analizaran y compararan los criterios relacionados con los Estados Limites ultimos de piezas flectadas con seccion mixta y se estudiara como influyen los rigidizadores, tanto transversales como longitudinales, en dichos Estados Limites Ultimos. Concretamente los Estados Limites Ultimos que seran objetivo de estudio seran: Resistencia a Flexion y a Cortante de la seccion, y dimensionado de los Rigidizadores. El estudio de los ELU recientemente citados incluye el analisis de la diversa casuistica tipica de los puentes mixtos: fenomenos de inestabilidad en fondos comprimidos y almas, presencia de losa inferior de hormigon en secciones de momentos negativos, particularidades de la seccion cajon, etc. Se debe resaltar que las diversas normativas de estructuras mixtas de hormigon y acero remiten con asiduidad en varios de sus apartados a las normativas especificas para estos materiales, por ejemplo al Eurocodigo 3 o al EHE. Por lo tanto el estudio de las secciones mixtas comporta tambien un buen conocimiento y dominio de las normativas que hacen referencia al hormigon y al acero por separado. Formalmente, el cuerpo del trabajo se estructura en tres partes bien diferenciadas: -CAPITULO III: Estudio critico comparativo -CAPITULO IV: Aplicacion practica de Eurocodigo y RPX-95 -CAPITULO V: Desarrollo de herramienta de calculo para la verificacion de rigidizadores transversales segun el Eurocodigo 4. En el CAPITULO III se lleva a cabo un analisis comparativo de la metodologia de analisis, condiciones y limitaciones que proponen cada una de las normativas, destacando las semejanzas y diferencias existentes entre ellas. Este apartado es basicamente teorico y tiene como objetivo observar las diferencias principales que existen y discutir el porque de estas, para los diversos criterios de Estado Limite Ultimo estudiados. Un aspecto interesante desde el punto de vista practico del diseño y proyecto de puentes es observar si las normativas son mas o menos conservadoras en las verificaciones que proponen y las limitaciones que establecen, ya que esto afecta directamente al coste del puente. A continuacion, en el CAPITULO IV, se realiza una aplicacion practica de algunos de los aspectos de Estado Limite ultimo estudiados en el CAPITULO III. Se aplican las metodologias de las dos normativas estudiadas con mayor profundidad, Eurocodigo y RPX-95, a diversas secciones tipo. De esta manera, se podran complementar y corroborar con datos numericos, las conclusiones extraidas del analisis comparativo del capitulo anterior. Por ultimo, en el CAPITULO V, se expone de manera detallada la informacion acerca de la hoja de Excel en que se ha implementado la metodologia de calculo para la verificacion de rigidizadores transversales segun los Eurocodigos. Esta hoja de calculo tiene como objetivo ser la version actualizada de ACE-003-Comprobación rigidizadores en cajones y perfiles en "H", una hoja de calculo utilizada e implementada en MC2 Estudio de Ingeniería S.L. en base a las directrices dictadas por la “Recomendaciones para el Proyecto de Puentes Mixtos para Carretera”.
Resumo:
En este artículo se presenta la aplicación del Método de los Elementos de Contorno a la determinación del campo de desplazamientos y tensiones de sistemas axisimétricos en régimen elástico. Desarrollando asimismo, un procedimiento para la determinación de los coeficientes de las matrices de influencia que aparecen en el tratamiento numérico del problema. El estudio del estado tensional del sistema axisimétrico es de obvio interés en Ingeniería, pudiendo citarse entre otras las siguientes aplicaciones: estudio de vasijas de todo tipo, y cobrando plena actualidad las vasijas de los reactores nucleares; efecto de grietas y entallas; efecto de la colocación de zunchos de pretensado en depósitos de hormigon armado, etc. El tratamiento numérico de este tipo de problemas se produce como consecuencia de la dificultad de encontrar soluciones cerradas para las ecuaciones de campo que definen el problema, ecuaciones que aunque establecidas hace tiempo, sólo han sido resueltas en casos particulares. La ventaja de la utilización del M.E.C.,frente a los métodos de dominio, se pone de manifiesto en el estudio de este tipo de sistemas ya que la consideración de una malla monodimensional es suficiente para representar la discretización del contorno, produciendose una considerable reducción del tiempo de cómputo.
Resumo:
El objeto del presente Proyecto es la definición del puente que servirá para que la vía del ferrocarril, pueda salvar el Arroyo del Molino a la altura del pk 9+200 del tramo Fresno de Rodilla - Quintanavides. Este tramo, a su vez, forma parte de la línea de alta velocidad Valladolid - Burgos - Vitoria. La nueva Línea de Alta Velocidad está incluida dentro de la red de altas prestaciones del Plan Estratégico de Infraestructuras y Transporte (PEIT) del Ministerio de Fomento para el periodo 2005-2020. Este recorrido discurre por los términos municipales de Fresno de Rodilla, Santa María del Invierno, Monasterio de Rodilla, Santa Olalla de Bureba y Quintanavides con una longitud de 8,2 km. La estructura objeto de estudio es un puente de un sólo vano de 38 metros de luz entre apoyos que salva el arroyo del Molino y un camino que discurre próximo a dicho arroyo. La solución propuesta consiste en un tablero formado por una artesa de hormigón prefabricado sobre la que se construye la losa de hormigón «in situ». Dicho tablero se apoya, a través de cuatro aparatos de tipo «pot» sobre sendos estribos de hormigon armado cimentados sobre pilotes. Estos estribos están dotados de muros en vuelta que sirven para contener el derrame del terraplén. El tablero se completa con las aceras, compuesta cada una de ellas por una imposta prefabricada anclada y una banda de 15 cm de hormigón «in situ», dos canaletas para cables de comunicaciones, los muretes guardabalasto, las juntas de dilatación en estribos y los anclajes para postes de las catenarias, dispuestos conforme a los diseños normalizados respectivos.
Resumo:
Se estudia la importancia de la microestructura: porosidad y fase acuosa contenida en los poros en relación con las propiedades de la pasta de cemento, mortero y hormigón, así como las consecuencias de sus alteraciones en la estabilidad del material.
Resumo:
En el presente estudio se elabora un estado del arte del hormigon autosellante tomando como base fundamentalmente la publicacion de Van Tittleboom y De Belie referenciada en la bibliografia, ampliandolo con otras fuentes bibliograficas consultadas. En el se explica el concepto de solidez del autosellado, las diferentes posibilidades de autosellado disponibles, se analizan las ventajas e inconvenientes de los diferentes tipos de agentes de autosellado y tecnicas de encapsulado. Tambien se tratan los mecanismos a aplicar para activar el proceso, y se tienen en cuenta las propiedades recuperadas a causa del autosellado y las tecnicas empleadas para cuantificarlo.
Resumo:
El deterioro del hormigón por ciclos de hielo-deshielo en presencia de sales fundentes es causa frecuente de problemas en los puentes e infraestructuras existentes en los países europeos. Los daños producidos por los ciclos de hielo-deshielo en el hormigón pueden ser internos, fundamentalmente la fisuración y/o externos como el descascarillamiento (desgaste superficial). La España peninsular presenta unas características geográficas y climáticas particulares. El 18% de la superficie tiene una altura superior a 1000mts y, además, la altura media geográfica con respecto al nivel del mar es de 660mts (siendo el segundo país más montañoso de toda Europa).Esto hace que la Red de Carreteras del Estado se vea afectada, durante determinados periodos, por fenómenos meteorológicos adversos, en particular por nevadas y heladas, que pueden comprometer las condiciones de vialidad para la circulación de vehículos. Por este motivo la Dirección General de Carreteras realiza trabajos anualmente (campañas de vialidad invernal, de 6 meses de duración) para el mantenimiento de la vialidad de las carreteras cuando éstas se ven afectadas por estos fenómenos. Existen protocolos y planes operativos que permiten sistematizar estos trabajos de mantenimiento que, además, se han intensificado en los últimos 10 años, y que se fundamentan en el empleo de sales fundentes, principalmente NaCl, con la misión de que no haya placas de hielo, ni nieve, en las carreteras. En zonas de fuerte oscilación térmica, que con frecuencia en España se localizan en la zona central del Pirineo, parte de la cornisa Cantábrica y Sistema Central, se producen importantes deterioros en las estructuras y paramentos de hormigón producidos por los ciclos de hielo- deshielo. Pero además el uso de fundentes de vialidad invernal acelera en gran medida la evolución de estos daños. Los tableros de hormigón de puentes de carretera de unos 40-50 años de antigüedad carecen, en general, de un sistema de impermeabilización, y están formados frecuentemente por un firme de mezcla asfáltica, una emulsión adherente y el hormigón de la losa. En la presente tesis se realiza una investigación que pretende reproducir en laboratorio los procesos que tienen lugar en el hormigón de tableros de puentes existentes de carreteras, de unos 40-50 años de antigüedad, que están expuestos durante largos periodos a sales fundentes, con objeto de facilitar la vialidad invernal, y a cambios drásticos de temperatura (hielo y deshielo). Por ello se realizaron cuatro campañas de investigación, teniendo en cuenta que, si bien nos basamos en la norma europea UNE-CEN/TS 12390-9 “Ensayos de hormigón endurecido. Resistencia al hielo-deshielo. Pérdida de masa”, se fabricaron probetas no estandarizadas para este ensayo, pensado en realidad para determinar la afección de los ciclos únicamente a la pérdida de masa. Las dimensiones de las probetas en nuestro caso fueron 150x300 mm, 75 x 150mm (cilíndricas normalizadas para roturas a compresión según la norma UNE-EN 12390-3) y 286x76x76 (prismáticas normalizadas para estudiar cambio de volumen según la norma ASTM C157), lo cual nos permitió realizar sobre las mismas probetas más ensayos, según se presentan en la tesis y, sobre todo, poder comparar los resultados con probetas extraídas de dimensiones similares en puentes existentes. En la primera campaña, por aplicación de la citada norma, se realizaron ciclos de H/D, con y sin contacto con sales de deshielo (NaCl en disolución del 3% según establece dicha norma). El hormigón fabricado en laboratorio, tratando de simular el de losas de tableros de puentes antiguos, presentó una fc de 22,6 MPa y relación agua/cemento de 0,65. Las probetas de hormigón fabricadas se sometieron a ciclos agresivos de hielo/deshielo (H/D), empleando una temperatura máxima de +20ºC y una temperatura mínima de -20ºC al objeto de poder determinar la sensibilidad de este ensayo tanto al tipo de hormigón elaborado como al tipo de probeta fabricado (cilíndrica y prismática). Esta campaña tuvo una segunda fase para profundizar más en el comportamiento de las probetas sometidas a ciclos H/D en presencia de sales. En la segunda campaña, realizada sobre probetas de hormigón fabricadas en laboratorio iguales a las anteriores, la temperaturas mínima del ensayo se subió a -14ºC, lo que nos permitió analizar el proceso de deterioro con más detalle. (Realizando una serie de ensayos de caracterización no destructivos y otros destructivos, y validando su aplicación a la detección de los deterioros causados tras los ensayos acelerados de hielodeshielo. También mediante aplicación de técnicas de microscopía electrónica.) La tercera campaña, se realizó sobre probetas de hormigón de laboratorio similares a las anteriores, fc de 29,3Mpa y relación a/c de 0,65, en las que se aplicó en una cara un revestimiento asfáltico de 2-4cms, según fueran prismáticas y cilíndricas respectivamente, compuesto por una mezcla asfáltica real (AC16), sobre una imprimación bituminosa. (Para simular el nivel de impermeabilización que produce un firme sobre el tablero de un puente) La cuarta campaña, se desarrolló tras una cuidadosa selección de dos puentes de hormigón de 40-50 años de antigüedad, expuestos y sensibles a deterioros de hielodeshielo, y en carreteras con aportación de fundentes. Una vez esto se extrajeron testigos de hormigón de zonas sanas (nervios del tablero), para realizar en laboratorio los mismos ensayos acelerados de hielo-deshielo y de caracterización, de la segunda campaña, basados en la misma norma. De los resultados obtenidos se concluye que cuando se emplean sales fundentes se acelera de forma significativa el deterioro, aumentando tanto el contenido de agua en los poros como el gradiente generado (mecanismo de deterioro físico). Las sales de deshielo aceleran claramente la aparición del daño, que se incrementa incluso en un factor de 5 según se constata en esta investigación para los hormigones ensayados. Pero además se produce un gradiente de cloruros que se ha detectado tanto en los hormigones diseñados en laboratorio como en los extraídos de puentes existentes. En casi todos los casos han aparecido cambios en la microestructura de la pasta de cemento (mecanismo de deterioro químico), confirmándose la formación de un compuesto en el gel CSH de la pasta de cemento, del tipo Ca2SiO3Cl2, que posiblemente está contribuyendo a la alteración de la pasta y a la aceleración de los daños en presencia de sales fundentes. Existe un periodo entre la aparición de fisuración y la pérdida de masa. Las fisuras progresan rápidamente desde la interfase de los áridos más pequeños y angulosos, facilitando así el deterioro del hormigón. Se puede deducir así que el tipo de árido afecta al deterioro. En el caso de los testigos con recubrimiento asfáltico, parece haberse demostrado que la precipitación de sales genera tensiones en las zonas de hormigón cercanas al recubrimiento, que terminan por fisurar el material. Y se constata que el mecanimo de deterioro químico, probablemente tenga más repercusión que el físico, por cuanto el recubrimiento asfáltico es capaz de retener suficiente agua, como para que el gradiente de contenido de agua en el hormigón sea mucho menor que sin el recubrimiento. Se constató, sin embargo, la importancia del gradiente de cloruros en el hormigon. Por lo que se deduce que si bien el recubrimiento asfáltico es ciertamente protector frente a los ciclos H/D, su protección disminuye en presencia de sales; es decir, los cloruros acabarán afectando al hormigón del tablero del puente. Finalmente, entre los hormigones recientes y los antiguos extraídos de puentes reales, se observa que existen diferencias significativas en cuanto a la resistencia a los ciclos H/D entre ellos. Los hormigones más recientes resultan, a igualdad de propiedades, más resistentes tanto a ciclos de H/D en agua como en sales. Posiblemente el hecho de que los hormigones de los puentes hayan estado expuestos a condiciones de temperaturas extremas durante largos periodos de tiempo les ha sensibilizado. La tesis realizada, junto con nuevos contrastes que se realicen en el futuro, nos permitirá implementar una metodología basada en la extracción de testigos de tableros de puente reales para someterlos a ensayos de hielo-deshielo, basados en la norma europea UNECEN/ TS 12390-9 aunque con probetas no normalizadas para el mismo, y, a su vez, realizar sobre estas probetas otros ensayos de caracterización destructivos, que posibilitarán evaluar los daños ocasionados por este fenómeno y su evolución temporal, para actuar consecuentemente priorizando intervenciones de impermeabilización y reparación en el parque de puentes de la RCE. Incluso será posible la elaboración de mapas de riesgo, en función de las zonas de climatología más desfavorable y de los tratamientos de vialidad invernal que se lleven a cabo. Concrete damage by freeze-thaw cycles in the presence of melting salts frequently causes problems on bridges and infrastructures in European countries. Damage caused by freeze-thaw cycles in the concrete can be internal, essentially cracking and / or external as flaking (surface weathering due to environmental action). The peninsular Spain presents specific climatic and geographical characteristics. 18% of the surface has a height greater than 1,000 m and the geographical average height from the sea level is 660 m (being the second most mountainous country in Europe). This makes the National Road Network affected during certain periods due to adverse weather, particularly snow and ice, which can compromise road conditions for vehicular traffic. For this reason the National Road Authority performs works annually (Winter Road Campaign, along 6 months) to maintain the viability of the roads when they are affected by these phenomena. There are protocols and operational plans that allow systematize these maintenance jobs, that also have intensified in the last 10 years, and which are based on the use of deicing salts, mainly NaCl, with the mission that no ice sheets, or snow appear on the roads. In areas of strong thermal cycling, which in Spain are located in the central area of the Pyrenees, part of the Cantabrian coast and Central System, significant deterioration take place in the structures and wall surfaces of concrete due to freeze-thaw. But also the use of deicing salts for winter maintenance greatly accelerated the development of such damages. The concrete decks for road bridges about 40-50 years old, lack generally a waterproofing system, and are often formed by a pavement of asphalt, an adhesive emulsion and concrete slab. In this thesis the research going on aims to reproduce in the laboratory the processes taking place in the concrete of an existing deck at road bridges, about 40-50 years old, they are exposed for long periods to icing salt, to be performed in order to facilitate winter maintenance, and drastic temperature changes (freezing and thawing). Therefore four campaigns of research were conducted, considering that while we rely on the European standard UNE-CEN/TS 12390-9 "Testing hardened concrete. Freezethaw resistance. Mass loss", nonstandard specimens were fabricated for this test, actually conceived to determine the affection of the cycles only to the mass loss. Dimensions of the samples were in our case 150x300 mm, 75 x 150mm (standard cylindrical specimens for compression fractures UNE-EN 12390-3) and 286x76x76 (standard prismatic specimens to study volume change ASTM C157), which allowed us to carry on same samples more trials, as presented in the thesis, and especially to compare the results with similar sized samples taken from real bridges. In the first campaign, by application of that European standard, freeze-thaw cycles, with and without contact with deicing salt (NaCl 3% solution in compliance with such standard) were performed. Concrete made in the laboratory, trying to simulate the old bridges, provided a compressive strength of 22.6 MPa and water/cement ratio of 0.65. In this activity, the concrete specimens produced were subjected to aggressive freeze/thaw using a maximum temperature of +20ºC and a minimum temperature of - 20°C in order to be able to determine the sensitivity of this test to the concrete and specimens fabricated. This campaign had a second phase to go deeper into the behavior of the specimens subjected to cycled freeze/thaw in the presence of salts. In the second campaign, conducted on similar concrete specimens manufactured in laboratory, temperatures of +20ºC and -14ºC were used in the tests, which allowed us to analyze the deterioration process in more detail (performing a series of non-destructive testing and other destructive characterization, validating its application to the detection of the damage caused after the accelerated freeze-thaw tests, and also by applying electron microscopy techniques). The third campaign was conducted on concrete specimens similar to the above manufactured in laboratory, both cylindrical and prismatic, which was applied on one side a 4 cm asphalt coating, consisting of a real asphalt mixture, on a bituminous primer (for simulate the level of waterproofing that produces a pavement on the bridge deck). The fourth campaign was developed after careful selection of two concrete bridges 40- 50 years old, exposed and sensitive to freeze-thaw damage, in roads with input of melting salts. Concrete cores were extracted from healthy areas, for the same accelerated laboratory freeze-thaw testing and characterization made for the second campaign, based on the same standard. From the results obtained it is concluded that when melting salts are employed deterioration accelerates significantly, thus increasing the water content in the pores, as the gradient. Besides, chloride gradient was detected both in the concrete designed in the laboratory and in the extracted in existing bridges. In all cases there have been changes in the microstructure of the cement paste, confirming the formation of a compound gel CSH of the cement paste, Ca2SiO3Cl2 type, which is possibly contributing to impair the cement paste and accelerating the damage in the presence of melting salts. The detailed study has demonstrated that the formation of new compounds can cause porosity at certain times of the cycles may decrease, paradoxically, as the new compound fills the pores, although this phenomenon does not stop the deterioration mechanism and impairments increase with the number of cycles. There is a period between the occurrence of cracking and mass loss. Cracks progress rapidly from the interface of the smallest and angular aggregate, thus facilitating the deterioration of concrete. It can be deduced so the aggregate type affects the deterioration. The presence of melting salts in the system clearly accelerates the onset of damage, which increases even by a factor of 5 as can be seen in this investigation for concrete tested. In the case of specimens with asphalt coating, it seems to have demonstrated that the precipitation of salts generate tensions in the areas close to the concrete coating that end up cracking the material. It follows that while the asphalt coating is certainly a protection against the freeze/thaw cycles, this protection decreases in the presence of salts; so the chlorides will finally affect the concrete bridge deck. Finally, among the recent concrete specimens and the old ones extracted from real bridges, it is observed that the mechanical strengths are very similar to each other, as well as the porosity values and the accumulation capacity after pore water saturation. However, there are significant differences in resistance to freeze/thaw cycles between them. More recent concrete are at equal properties more resistant both cycles freeze/thaw in water with or without salts. Possibly the fact that concrete bridges have been exposed to extreme temperatures for long periods of time has sensitized them. The study, along with new contrasts that occur in the future, allow us to implement a methodology based on the extraction of cores from the deck of real bridges for submission to freeze-thaw tests based on the European standard UNE-CEN/TS 12390-9 even with non-standard specimens for it, and in turn, performed on these samples other destructive characterization tests, which will enable to assess the damage caused by this phenomenon and its evolution, to act rightly prioritizing interventions improving the waterproofing and other repairs in the bridge stock of the National Road Network. It will even be possible to develop risk maps, depending on the worst weather areas and winter road treatments to be carried out.
Resumo:
En este artículo se aplica el modelo de la EHE-08 de carbonatación y de penetración de cloruros a la determinación de la vida útil de conductos de hormigón utilizados en sistemas de saneamiento y drenaje. Asimismo, se presentan de forma sencilla una serie de reglas que pueden contribuir a la mejora del comportamiento de los conductos de hormigón en las condiciones de servicio más frecuentes.
Resumo:
Los conductos de hormigón durante su vida útil, están sometidos a un conjunto de acciones mecánicas, físicas, químicas y microbiológicas frente a las que deben de diseñarse para soportarlas sin perder sus prestaciones funcionales, de estabilidad mecánica y de estanquidad. Por tanto, las tuberías se deben diseñar y fabricar conforme con unos estándares de calidad adecuados. En este artículo se analizan las acciones mecánicas, físicas y químicas que afectan a los conductos de hormigón utilizados en sistemas de saneamiento y drenaje.
Resumo:
La presente publicación es una ampliación de la colección 50 de problemas de hormigón armado que fue publicada en el RUA de la Universidad de Alicante en abril de 2011. Además de ampliar el número de ejercicios se han corregido las erratas detectadas. Esta colección recopila ejercicios y problemas de hormigón armado que han venido proponiéndose en las clases de prácticas, o bien han ido apareciendo en los exámenes de las asignaturas de 3º de Ing. Técnica de Obras Públicas y 4º de Arquitectura en la Universidad de Alicante.
Resumo:
Este libro de "Apuntes de Hormigón Armado" desarrolla los contenidos relacionados con el cálculo y comprobación de estructuras de edificación convencionales construidas en hormigón armado. Incluye los Estados Límite Últimos (piezas flectadas y flexo-comprimidas, cortante y punzonamiento, inestabilidad en pilares, redistribución limitada de momentos), Estados Límite de Servicio (fisuración y deformaciones instantáneas y diferidas), disposiciones constructivas de armaduras longitudinales y tangenciales y cálculo de elementos de cimentación y contención. La norma de referencia es la Instrucción Española de Hormigón Estructural, EHE-08, aunque también se reseña puntualmente el Eurocódigo 2.
Resumo:
Presentaciones de los temas que integran los contenidos de la asignatura "Hormigón Armado y Pretensado", impartida en las titulaciones de Ingeniería Técnica de Obras Públicas, Ingeniería Geológica y Grado en Ing. Civil.
Resumo:
Supuestos prácticos de autoevaluación de la asignatura "Estructuras de Hormigón Armado y Pretensado".
Resumo:
RESUMEN Ante el incremento del uso de los perfiles de acero en nuestro medio, de una manera empírica en muchos de los casos, lo cual se convierte en una amenaza que atenta contra la seguridad de las personas, se realiza este trabajo que servirá como guía a todos los profesionales interesados en incrementar sus conocimientos e incursionar en cálculo y diseño de elementos estructurales usando secciones mixtas. Se explica el cálculo y diseño de secciones mixtas, específicamente de entrepisos con losa colaborante sobre vigas construidas, columnas tubulares rellenas de hormigón, usando el método LRFD, ejemplificados en una estructura que fue calculada usando secciones de acero únicamente. Los resultados de los dos análisis se tabulan y se compara el peso de acero que se necesita cuando se calcula como elementos de acero solo, con el peso que se necesita cuando se calcula el acero trabajando en conjunto con el hormigón.