959 resultados para HOMEOSTATIC PLASTICITY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Layer 5 contains the major projection neurons of the neocortex and is composed of two major cell types: regular spiking (RS) cells, which have cortico-cortical projections, and intrinsic bursting cells (IB), which have subcortical projections. Little is known about the plasticity processes and specifically the molecular mechanisms by which these two cell classes develop and maintain their unique integrative properties. In this study, we find that RS and IB cells show fundementally different experience-dependent plasticity processes and integrate Hebbian and homeostatic components of plasticity differently. Both RS and IB cells showed TNFα-dependent homeostatic plasticity in response to sensory deprivation, but IB cells were capable of a much faster synaptic depression and homeostatic rebound than RS cells. Only IB cells showed input-specific potentiation that depended on CaMKII autophosphorylation. Our findings demonstrate that plasticity mechanisms are not uniform within the neocortex, even within a cortical layer, but are specialized within subcircuits.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

During the last two decades, analysis of 1/f noise in cognitive science has led to a considerable progress in the way we understand the organization of our mental life. However, there is still a lack of specific models providing explanations of how 1/f noise is generated in coupled brain-body-environment systems, since existing models and experiments typically target either externally observable behaviour or isolated neuronal systems but do not address the interplay between neuronal mechanisms and sensorimotor dynamics. We present a conceptual model of a minimal neurorobotic agent solving a behavioural task that makes it possible to relate mechanistic (neurodynamic) and behavioural levels of description. The model consists of a simulated robot controlled by a network of Kuramoto oscillators with homeostatic plasticity and the ability to develop behavioural preferences mediated by sensorimotor patterns. With only three oscillators, this simple model displays self-organized criticality in the form of robust 1/f noise and a wide multifractal spectrum. We show that the emergence of self-organized criticality and 1/f noise in our model is the result of three simultaneous conditions: a) non-linear interaction dynamics capable of generating stable collective patterns, b) internal plastic mechanisms modulating the sensorimotor flows, and c) strong sensorimotor coupling with the environment that induces transient metastable neurodynamic regimes. We carry out a number of experiments to show that both synaptic plasticity and strong sensorimotor coupling play a necessary role, as constituents of self-organized criticality, in the generation of 1/f noise. The experiments also shown to be useful to test the robustness of 1/f scaling comparing the results of different techniques. We finally discuss the role of conceptual models as mediators between nomothetic and mechanistic models and how they can inform future experimental research where self-organized critically includes sensorimotor coupling among the essential interaction-dominant process giving rise to 1/f noise.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A fundamental goal in neurobiology is to understand the development and organization of neural circuits that drive behavior. In the embryonic spinal cord, the first motor activity is a slow coiling of the trunk that is sensory-independent and therefore appears to be centrally driven. Embryos later become responsive to sensory stimuli and eventually locomote, behaviors that are shaped by the integration of central patterns and sensory feedback. In this thesis I used a simple vertebrate model, the zebrafish, to investigate in three manners how developing spinal networks control these earliest locomotor behaviors. For the first part of this thesis, I characterized the rapid transition of the spinal cord from a purely electrical circuit to a hybrid network that relies on both chemical and electrical synapses. Using genetics, lesions and pharmacology we identified a transient embryonic behavior preceding swimming, termed double coiling. I used electrophysiology to reveal that spinal motoneurons had glutamate-dependent activity patterns that correlated with double coiling as did a population of descending ipsilateral glutamatergic interneurons that also innervated motoneurons at this time. This work (Knogler et al., Journal of Neuroscience, 2014) suggests that double coiling is a discrete step in the transition of the motor network from an electrically coupled circuit that can only produce simple coils to a spinal network driven by descending chemical neurotransmission that can generate more complex behaviors. In the second part of my thesis, I studied how spinal networks filter sensory information during self-generated movement. In the zebrafish embryo, mechanosensitive sensory neurons fire in response to light touch and excite downstream commissural glutamatergic interneurons to produce a flexion response, but spontaneous coiling does not trigger this reflex. I performed electrophysiological recordings to show that these interneurons received glycinergic inputs during spontaneous fictive coiling that prevented them from firing action potentials. Glycinergic inhibition specifically of these interneurons and not other spinal neurons was due to the expression of a unique glycine receptor subtype that enhanced the inhibitory current. This work (Knogler & Drapeau, Frontiers in Neural Circuits, 2014) suggests that glycinergic signaling onto sensory interneurons acts as a corollary discharge signal for reflex inhibition during movement. v In the final part of my thesis I describe work begun during my masters and completed during my doctoral degree studying how homeostatic plasticity is expressed in vivo at central synapses following chronic changes in network activity. I performed whole-cell recordings from spinal motoneurons to show that excitatory synaptic strength scaled up in response to decreased network activity, in accordance with previous in vitro studies. At the network level, I showed that homeostatic plasticity mechanisms were not necessary to maintain the timing of spinal circuits driving behavior, which appeared to be hardwired in the developing zebrafish. This study (Knogler et al., Journal of Neuroscience, 2010) provided for the first time important in vivo results showing that synaptic patterning is less plastic than synaptic strength during development in the intact animal. In conclusion, the findings presented in this thesis contribute widely to our understanding of the neural circuits underlying simple motor behaviors in the vertebrate spinal cord.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Changing the whisker complement on a rodent's snout can lead to two forms of experience-dependent plasticity (EDP) in the neurons of the barrel cortex, where whiskers are somatotopically represented. One form, termed coding plasticity, concerns changes in synaptic transmission and connectivity between neurons. This is thought to underlie learning and memory processes and so adaptation to a changing environment. The second, called homeostatic plasticity, serves to maintain a restricted dynamic range of neuronal activity thus preventing its saturation or total downregulation. Current explanatory models of cortical EDP are almost exclusively neurocentric. However, in recent years, increasing evidence has emerged on the role of astrocytes in brain function, including plasticity. Indeed, astrocytes appear as necessary partners of neurons at the core of the mechanisms of coding and homeostatic plasticity recorded in neurons. In addition to neuronal plasticity, several different forms of astrocytic plasticity have recently been discovered. They extend from changes in receptor expression and dynamic changes in morphology to alteration in gliotransmitter release. It is however unclear how astrocytic plasticity contributes to the neuronal EDP. Here, we review the known and possible roles for astrocytes in the barrel cortex, including its plasticity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

海马在某些类型的学习和记忆中起着关键的作用,而突触可塑性(synaptic plasticity)为学习和记忆的模型提供了理论基础。在海马环路中,分布着各种类型的可塑性,包括突触特异的Hebbian形式的可塑性,如长时程增强(long-term potentiation,LTP)和长时程抑制(long-term depression,LTD);稳态可塑性(homeostatic plasticity),如突触缩放(synaptic scaling)。稳态可塑性是一种整体的调控过程,它可以调节神经元甚至神经网络的平衡;而Hebbian可塑性则是突触特异的,即每个突触进行单独调控的过程。 越来越多的研究提示稳态可塑性和Hebbian可塑性之间存在着空间间隙(spatial gap),那么,如何使得神经元可以通过Hebbian可塑性的过程来维持细胞整体的兴奋性就变得尤为重要。一些报道揭示了LTP和LTD可以在同一突触通路中同时被激活,因此,我们提出组合突触可塑性的概念,即LTP和LTD的组合,它在赋予系统灵活性的同时又可以降低噪音维持系统的稳定性。基于此,本文将围绕这个问题而开展实验工作。 通过对海马CA1区锥体神经元的微小兴奋性突触后电流(miniature excitatory synaptic current, mEPSC)进行测定分析,我们发现mEPSC的幅度分布符合双峰正态分布(double-peak normal distribution)。Theta节律刺激(theta burst stimuli, TBS)诱导后,mEPSC的幅度分布发生改变,呈现右移趋势。随后,采用干扰肽Pep-A2特异地阻断LTP而不影响LTD,我们发现Pep-A2不影响基础状态下mEPSC的幅度分布。在干扰肽Pep-A2存在下,TBS诱导对基础状态下mEPSC的幅度分布也没有影响。结果为揭示LTP和LTD的组合可塑性提供了初步的证据,对进一步理解记忆的编码过程提供了一定的基础。社交隔离可以引起实验大鼠产生焦虑样和抑郁样的行为,而性经历可以改变动物的情绪状态,降低焦虑样和抑郁样的反应。然而,性经历后进行社交隔离对大鼠情绪的影响并没有报道。在这部分工作中,雄性大鼠经历一周的社交活动(male-male paired housing)或者性活动(male-female paired housing),随后进行一段时间的隔离(1天,2天或者7天)。我们发现,经历过性活动的大鼠,无论隔离与否都表现出相似的情绪反应,包括焦虑样和抑郁样行为以及超声波(ultrasonic vocalizations,USVs)发放;而未经历过性活动的大鼠,其情绪反应随着隔离时间的不同而不同。这一现象提示我们,先前的性经历可以对抗实验动物对环境应激事件,如社交隔离的反应。

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cortical neurons receive balanced excitatory and inhibitory synaptic currents. Such a balance could be established and maintained in an experience-dependent manner by synaptic plasticity at inhibitory synapses. We show that this mechanism provides an explanation for the sparse firing patterns observed in response to natural stimuli and fits well with a recently observed interaction of excitatory and inhibitory receptive field plasticity. The introduction of inhibitory plasticity in suitable recurrent networks provides a homeostatic mechanism that leads to asynchronous irregular network states. Further, it can accommodate synaptic memories with activity patterns that become indiscernible from the background state but can be reactivated by external stimuli. Our results suggest an essential role of inhibitory plasticity in the formation and maintenance of functional cortical circuitry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim To measure latitude-related body size variation in field-collected Paropsis atomaria Olivier (Coleoptera: Chrysomelidae) individuals and to conduct common-garden experiments to determine whether such variation is due to phenotypic plasticity or local adaptation. Location Four collection sites from the east coast of Australia were selected for our present field collections: Canberra (latitude 35°19' S), Bangalow (latitude 28°43' S), Beerburrum (latitude 26°58' S) and Lowmead (latitude 24°29' S). Museum specimens collected over the past 100 years and covering the same geographical area as the present field collections came from one state, one national and one private collection. Methods Body size (pronotum width) was measured for 118 field-collected beetles and 302 specimens from collections. We then reared larvae from the latitudinal extremes (Canberra and Lowmead) to determine whether the size cline was the result of phenotypic plasticity or evolved differences (= local adaptation) between sites. Results Beetles decreased in size with increasing latitude, representing a converse Bergmann cline. A decrease in developmental temperature produced larger adults for both Lowmead (low latitude) and Canberra (high latitude) individuals, and those from Lowmead were larger than those from Canberra when reared under identical conditions. Main conclusions The converse Bergmann cline in P. atomaria is likely to be the result of local adaptation to season length.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the years, approaches to obesity prevention and treatment have gone from focusing on genetic and other biological factors to exploring a diversity of diets and individual behavior modification interventions anchored primarily in the power of the mind, to the recent shift focusing on societal interventions to design ";temptation-proof"; physical, social, and economic environments. In spite of repeated calls to action, including those of the World Health Organization (WHO), the pandemic continues to progress. WHO recently projected that if the current lifestyle trend in young and adult populations around the world persist, by 2012 in countries like the USA, health care costs may amount to as much as 17.7% of the GDP. Most importantly, in large part due to the problems of obesity, those children may be the first generation ever to have a shorter life expectancy than that of their parents. This work presents the most current research and proposals for addressing the pandemic. Past studies have focused primarly on either genetic or behavioral causes for obesity, however today's research indicates that a strongly integrated program is the best prospect for success in overcoming obesity. Furthermore, focus on the role of society in establishing an affordable, accessible and sustainable program for implementing these lifestyle changes is vital, particularly for those in economically challenged situations, who are ultimately at the highest risk for obesity. Using studies from both neuroscience and behavioral science to present a comprehensive overview of the challenges and possible solutions, The brain-to-society approach to obesity prevention focuses on what is needed in order to sustain a healthy, pleasurable and affordable lifestyle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How do agents with limited cognitive capacities flourish in informationally impoverished or unexpected circumstances? Aristotle argued that human flourishing emerged from knowing about the world and our place within it. If he is right, then the virtuous processes that produce knowledge, best explain flourishing. Influenced by Aristotle, virtue epistemology defends an analysis of knowledge where beliefs are evaluated for their truth and the intellectual virtue or competences relied on in their creation. However, human flourishing may emerge from how degrees of ignorance are managed in an uncertain world. Perhaps decision-making in the shadow of knowledge best explains human wellbeing—a Bayesian approach? In this dissertation I argue that a hybrid of virtue and Bayesian epistemologies explains human flourishing—what I term homeostatic epistemology. Homeostatic epistemology supposes that an agent has a rational credence p when p is the product of reliable processes aligned with the norms of probability theory; whereas an agent knows that p when a rational credence p is the product of reliable processes such that: 1) p meets some relevant threshold for belief (such that the agent acts as though p were true and indeed p is true), 2) p coheres with a satisficing set of relevant beliefs and, 3) the relevant set of beliefs is coordinated appropriately to meet the integrated aims of the agent. Homeostatic epistemology recognizes that justificatory relationships between beliefs are constantly changing to combat uncertainties and to take advantage of predictable circumstances. Contrary to holism, justification is built up and broken down across limited sets like the anabolic and catabolic processes that maintain homeostasis in the cells, organs and systems of the body. It is the coordination of choristic sets of reliably produced beliefs that create the greatest flourishing given the limitations inherent in the situated agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Application of 'advanced analysis' methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A research project has been conducted with the aim of developing concentrated plasticity methods suitable for practical advanced analysis of steel frame structures comprising non-compact sections. A primary objective was to produce a comprehensive range of new distributed plasticity analytical benchmark solutions for verification of the concentrated plasticity methods. A distributed plasticity model was developed using shell finite elements to explicitly account for the effects of gradual yielding and spread of plasticity, initial geometric imperfections, residual stresses and local buckling deformations. The model was verified by comparison with large-scale steel frame test results and a variety of existing analytical benchmark solutions. This paper presents a description of the distributed plasticity model and details of the verification study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Learning and memory depend on signaling mole- cules that affect synaptic efficacy. The cytoskeleton has been implicated in regulating synaptic transmission but its role in learning and memory is poorly understood. Fear learning depends on plasticity in the lateral nucleus of the amygdala. We therefore examined whether the cytoskeletal-regulatory protein, myosin light chain kinase, might contribute to fear learning in the rat lateral amygdala. Microinjection of ML-7, a specific inhibitor of myosin light chain kinase, into the lateral nucleus of the amygdala before fear conditioning, but not immediately afterward, enhanced both short-term memory and long-term memory, suggesting that myosin light chain kinase is involved specifically in memory acquisition rather than in posttraining consolidation of memory. Myosin light chain kinase inhibitor had no effect on memory retrieval. Furthermore, ML-7 had no effect on behavior when the train- ing stimuli were presented in a non-associative manner. An- atomical studies showed that myosin light chain kinase is present in cells throughout lateral nucleus of the amygdala and is localized to dendritic shafts and spines that are postsynaptic to the projections from the auditory thalamus to lateral nucleus of the amygdala, a pathway specifically impli- cated in fear learning. Inhibition of myosin light chain kinase enhanced long-term potentiation, a physiological model of learning, in the auditory thalamic pathway to the lateral nu- cleus of the amygdala. When ML-7 was applied without as- sociative tetanic stimulation it had no effect on synaptic responses in lateral nucleus of the amygdala. Thus, myosin light chain kinase activity in lateral nucleus of the amygdala appears to normally suppress synaptic plasticity in the cir- cuits underlying fear learning, suggesting that myosin light chain kinase may help prevent the acquisition of irrelevant fears. Impairment of this mechanism could contribute to pathological fear learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumour heterogeneity is a key characteristic of cancer and has significant implications relating to tumour response to chemotherapy as well as patient prognosis and potential relapse. It is being increasingly accepted that tumours are clonal in origin, suggestive of a tumour arising from a deregulated or mutated cell. Cancer stem cells (CSC) possess these capabilities, and with appropriate intracellular triggers and/or signalling from extracellular environments, can purportedly differentiate to initiate tumour formation. Additionally through epithelial mesenchymal plasticity (EMP), where cells gain and maintain characteristics of both epithelial and mesenchymal cell types, epithelial-derived tumour cells have been shown to de-differentiate to acquire cancer stem attributes, which also impart chemotherapy resistance. This new paradigm places EMP centrally in the process of tumour progression and metastasis, as well as modulating drug response to current forms of chemotherapy. Furthermore, EMP and CSCs have been identified in cancers arising from different tissue types making it a possible generic therapeutic target in cancer biology. Using breast cancer (BrCa) as an example, we summarise here the current understanding of CSCs, the role of EMP in cancer biology - especially in CSCs and different molecular subtypes, and the implications this has for current and future cancer treatment strategies.