19 resultados para HMAX
Resumo:
The question of how shape is represented is of central interest to understanding visual processing in cortex. While tuning properties of the cells in early part of the ventral visual stream, thought to be responsible for object recognition in the primate, are comparatively well understood, several different theories have been proposed regarding tuning in higher visual areas, such as V4. We used the model of object recognition in cortex presented by Riesenhuber and Poggio (1999), where more complex shape tuning in higher layers is the result of combining afferent inputs tuned to simpler features, and compared the tuning properties of model units in intermediate layers to those of V4 neurons from the literature. In particular, we investigated the issue of shape representation in visual area V1 and V4 using oriented bars and various types of gratings (polar, hyperbolic, and Cartesian), as used in several physiology experiments. Our computational model was able to reproduce several physiological findings, such as the broadening distribution of the orientation bandwidths and the emergence of a bias toward non-Cartesian stimuli. Interestingly, the simulation results suggest that some V4 neurons receive input from afferents with spatially separated receptive fields, leading to experimentally testable predictions. However, the simulations also show that the stimulus set of Cartesian and non-Cartesian gratings is not sufficiently complex to probe shape tuning in higher areas, necessitating the use of more complex stimulus sets.
Resumo:
Nickel rich NiTi films were sputter deposited on p-doped Si left angle bracket1 0 0right-pointing angle bracket substrates maintained at 300 °C. The films were subsequently solution treated at 700 °C for 30 min followed by ageing at 400 and 500 °C for 5 h. The microstructure of the films was examined by TEM and these studies revealed that the NiTi films were mostly amorphous in the as-deposited condition. The subsequent solution treatment and ageing resulted in crystallization of the films with the film aged at 400 °C exhibiting nanocrystalline grains and three phases viz. B2 (austenite), R and Ni3Ti2 whereas the film aged at 500 °C shows micron sized grains and two phases viz. R and Ni3Ti2. Nanoindentation studies revealed that the nature of the load versus indentation depth response for the films aged at 400 and 500 °C was different. For the same load, the indenter penetrated to a much greater depth for the film aged at 400 °C as compared to the film aged at 500 °C. Also the ratio of the residual indentation depth (hf) to maximum indentation depth (hmax) is lower for the film aged at 400 °C as compared to the film aged at 500 °C. This was attributed to the occurrence of stress induced martensitic transformation of the B2 phase present in the film aged at 400 °C during indentation loading which results in a transformation strain in addition to the normal elastic and plastic strains and its subsequent recovery on unloading. The hardness and elastic modulus measured using the Oliver and Pharr analysis was also found to be lower for the film aged at 400 °C as compared to the film aged at 500 °C which was also primarily attributed to the same effect.
Resumo:
A waverider buoy was deployed in Phitti Creek (24°33'N; 67°03'E) for wave measurements during April-July 1986. Using Tucker's method wave records were calculated in terms of significant wave height (Hs) and Maximum Wave Height (Hmax). For each parameter weekly mean and standard deviation values were also computed for statistical analysis. For Hs the lowest mean value of 0.8m and for Hmax the lowest mean value of 1.51m were observed in the fourth week of April whereas the highest mean value observed for Hs was 3.02m and for Hmax was 4.94m in the fourth week of June, 1986.
Resumo:
In this paper, a novel cortex-inspired feed-forward hierarchical object recognition system based on complex wavelets is proposed and tested. Complex wavelets contain three key properties for object representation: shift invariance, which enables the extraction of stable local features; good directional selectivity, which simplifies the determination of image orientations; and limited redundancy, which allows for efficient signal analysis using the multi-resolution decomposition offered by complex wavelets. In this paper, we propose a complete cortex-inspired object recognition system based on complex wavelets. We find that the implementation of the HMAX model for object recognition in [1, 2] is rather over-complete and includes too much redundant information and processing. We have optimized the structure of the model to make it more efficient. Specifically, we have used the Caltech 5 standard dataset to compare with Serre's model in [2] (which employs Gabor filter bands). Results demonstrate that the complex wavelet model achieves a speed improvement of about 4 times over the Serre model and gives comparable recognition performance. © 2011 IEEE.
Resumo:
Large waves pose risks to ships, offshore structures, coastal infrastructure and ecosystems. This paper analyses 10 years of in-situ measurements of significant wave height (Hs) and maximum wave height (Hmax) from the ocean weather ship Polarfront in the Norwegian Sea. During the period 2000 to 2009, surface elevation was recorded every 0.59 s during sampling periods of 30 min. The Hmax observations scale linearly with Hs on average. A widely-used empirical Weibull distribution is found to estimate average values of Hmax/H s and Hmax better than a Rayleigh distribution, but tends to underestimate both for all but the smallest waves. In this paper we propose a modified Rayleigh distribution which compensates for the heterogeneity of the observed dataset: the distribution is fitted to the whole dataset and improves the estimate of the largest waves. Over the 10-year period, the Weibull distribution approximates the observed Hs and Hmax well, and an exponential function can be used to predict the probability distribution function of the ratio Hmax/Hs. However, the Weibull distribution tends to underestimate the occurrence of extremely large values of Hs and Hmax. The persistence of Hs and Hmax in winter is also examined. Wave fields with Hs > 12 m and Hmax > 16 m do not last longer than 3 h. Low-to-moderate wave heights that persist for more than 12 h dominate the relationship of the wave field with the winter NAO index over 2000–2009. In contrast, the inter-annual variability of wave fields with Hs > 5.5 m or Hmax > 8.5 m and wave fields persisting over ~2.5 days is not associated with the winter NAO index.
Resumo:
This paper analyses 10 years of in-situ measurements of significant wave height (Hs) and maximum wave height (Hmax) from the ocean weather ship Polarfront in the Norwegian Sea. The 30-minute Ship-Borne Wave Recorder measurements of Hmax and Hs are shown to be consistent with theoretical wave distributions. The linear regression between Hmax and Hs has a slope of 1.53. Neither Hs nor Hmax show a significant trend in the period 2000–2009. These data are combined with earlier observations. The long-term trend over the period 1980–2009 in annual Hs is 2.72 ± 0.88 cm/year. Mean Hs and Hmax are both correlated with the North Atlantic Oscillation (NAO) index during winter. The correlation with the NAO index is highest for the more frequently encountered (75th percentile) wave heights. The wave field variability associated with the NAO index is reconstructed using a 500-year NAO index record. Hs and H max are found to vary by up to 1.42 m and 3.10 m respectively over the 500-year period. Trends in all 30-year segments of the reconstructed wave field are lower than the trend in the observations during 1980–2009. The NAO index does not change significantly in 21st century projections from CMIP5 climate models under scenario RCP85, and thus no NAO-related changes are expected in the mean and extreme wave fields of the Norwegian Sea.
Resumo:
Study of nanomechanical response of iron carbides is important because presence of iron carbides greatly influences the performance and longevity of steel components. This work contributes to the literature by exploring nanoindentation of nanocrystalline Fe3C and tetrahedral-Fe4C using molecular dynamics simulation. The chemical interactions of iron and carbon were described through an analytical bond order inter-atomic potential (ABOP) energy function. The indentations were performed at an indentation speed of 50 m/sec and a repeat trial was performed at 5 m/sec. Load-displacement (P-h) curve for both these carbides showed residual indentation depth and maximum indentation depth (hf/hmax) ratio to be higher than 0.7 i.e. a circumstance where Oliver and Pharr method was not appropriate to be applied to evaluate the material properties. Alternate evaluation revealed Fe3C to be much harder than Fe4C. Gibbs free energy of formation and radial distribution function, coupled with state of the average local temperature and von Mises stresses indicate the formation of a new phase of iron-carbide. Formation of this newer phase was found to be due to deviatoric strain rather than the high temperature induced in the substrate during nanoindentation
Resumo:
The HMAX model has recently been proposed by Riesenhuber & Poggio as a hierarchical model of position- and size-invariant object recognition in visual cortex. It has also turned out to model successfully a number of other properties of the ventral visual stream (the visual pathway thought to be crucial for object recognition in cortex), and particularly of (view-tuned) neurons in macaque inferotemporal cortex, the brain area at the top of the ventral stream. The original modeling study only used ``paperclip'' stimuli, as in the corresponding physiology experiment, and did not explore systematically how model units' invariance properties depended on model parameters. In this study, we aimed at a deeper understanding of the inner workings of HMAX and its performance for various parameter settings and ``natural'' stimulus classes. We examined HMAX responses for different stimulus sizes and positions systematically and found a dependence of model units' responses on stimulus position for which a quantitative description is offered. Interestingly, we find that scale invariance properties of hierarchical neural models are not independent of stimulus class, as opposed to translation invariance, even though both are affine transformations within the image plane.
Resumo:
Most psychophysical studies of object recognition have focussed on the recognition and representation of individual objects subjects had previously explicitely been trained on. Correspondingly, modeling studies have often employed a 'grandmother'-type representation where the objects to be recognized were represented by individual units. However, objects in the natural world are commonly members of a class containing a number of visually similar objects, such as faces, for which physiology studies have provided support for a representation based on a sparse population code, which permits generalization from the learned exemplars to novel objects of that class. In this paper, we present results from psychophysical and modeling studies intended to investigate object recognition in natural ('continuous') object classes. In two experiments, subjects were trained to perform subordinate level discrimination in a continuous object class - images of computer-rendered cars - created using a 3D morphing system. By comparing the recognition performance of trained and untrained subjects we could estimate the effects of viewpoint-specific training and infer properties of the object class-specific representation learned as a result of training. We then compared the experimental findings to simulations, building on our recently presented HMAX model of object recognition in cortex, to investigate the computational properties of a population-based object class representation as outlined above. We find experimental evidence, supported by modeling results, that training builds a viewpoint- and class-specific representation that supplements a pre-existing repre-sentation with lower shape discriminability but possibly greater viewpoint invariance.
Resumo:
In a recent experiment, Freedman et al. recorded from inferotemporal (IT) and prefrontal cortices (PFC) of monkeys performing a "cat/dog" categorization task (Freedman 2001 and Freedman, Riesenhuber, Poggio, Miller 2001). In this paper we analyze the tuning properties of view-tuned units in our HMAX model of object recognition in cortex (Riesenhuber 1999) using the same paradigm and stimuli as in the experiment. We then compare the simulation results to the monkey inferotemporal neuron population data. We find that view-tuned model IT units that were trained without any explicit category information can show category-related tuning as observed in the experiment. This suggests that the tuning properties of experimental IT neurons might primarily be shaped by bottom-up stimulus-space statistics, with little influence of top-down task-specific information. The population of experimental PFC neurons, on the other hand, shows tuning properties that cannot be explained just by stimulus tuning. These analyses are compatible with a model of object recognition in cortex (Riesenhuber 2000) in which a population of shape-tuned neurons provides a general basis for neurons tuned to different recognition tasks.
Resumo:
Numerous psychophysical experiments have shown an important role for attentional modulations in vision. Behaviorally, allocation of attention can improve performance in object detection and recognition tasks. At the neural level, attention increases firing rates of neurons in visual cortex whose preferred stimulus is currently attended to. However, it is not yet known how these two phenomena are linked, i.e., how the visual system could be "tuned" in a task-dependent fashion to improve task performance. To answer this question, we performed simulations with the HMAX model of object recognition in cortex [45]. We modulated firing rates of model neurons in accordance with experimental results about effects of feature-based attention on single neurons and measured changes in the model's performance in a variety of object recognition tasks. It turned out that recognition performance could only be improved under very limited circumstances and that attentional influences on the process of object recognition per se tend to display a lack of specificity or raise false alarm rates. These observations lead us to postulate a new role for the observed attention-related neural response modulations.
Resumo:
This paper analyses 10 years of in-situ measurements of significant wave height (Hs) and maximum wave height (Hmax) from the ocean weather ship Polarfront in the Norwegian Sea. The 30-minute Ship-Borne Wave Recorder measurements of Hmax and Hs are shown to be consistent with theoretical wave distributions. The linear regression between Hmax and Hs has a slope of 1.53. Neither Hs nor Hmax show a significant trend in the period 2000–2009. These data are combined with earlier observations. The long-term trend over the period 1980–2009 in annual Hs is 2.72 ± 0.88 cm/year. Mean Hs and Hmax are both correlated with the North Atlantic Oscillation (NAO) index during winter. The correlation with the NAO index is highest for the more frequently encountered (75th percentile) wave heights. The wave field variability associated with the NAO index is reconstructed using a 500-year NAO index record. Hs and Hmax are found to vary by up to 1.42 m and 3.10 m respectively over the 500-year period. Trends in all 30-year segments of the reconstructed wave field are lower than the trend in the observations during 1980–2009. The NAO index does not change significantly in 21st century projections from CMIP5 climate models under scenario RCP85, and thus no NAO-related changes are expected in the mean and extreme wave fields of the Norwegian Sea.
Resumo:
Large waves pose risks to ships, offshore structures, coastal infrastructure and ecosystems. This paper analyses 10 years of in-situ measurements of significant wave height (Hs) and maximum wave height (Hmax) from the ocean weather ship Polarfront in the Norwegian Sea. During the period 2000 to 2009, surface elevation was recorded every 0.59 s during sampling periods of 30 min. The Hmax observations scale linearly with Hs on average. A widely-used empirical Weibull distribution is found to estimate average values of Hmax/Hs and Hmax better than a Rayleigh distribution, but tends to underestimate both for all but the smallest waves. In this paper we propose a modified Rayleigh distribution which compensates for the heterogeneity of the observed dataset: the distribution is fitted to the whole dataset and improves the estimate of the largest waves. Over the 10-year period, the Weibull distribution approximates the observed Hs and Hmax well, and an exponential function can be used to predict the probability distribution function of the ratio Hmax/Hs. However, the Weibull distribution tends to underestimate the occurrence of extremely large values of Hs and Hmax. The persistence of Hs and Hmax in winter is also examined. Wave fields with Hs>12 m and Hmax>16 m do not last longer than 3 h. Low-to-moderate wave heights that persist for more than 12 h dominate the relationship of the wave field with the winter NAO index over 2000–2009. In contrast, the inter-annual variability of wave fields with Hs>5.5 m or Hmax>8.5 m and wave fields persisting over ~2.5 days is not associated with the winter NAO index.
Resumo:
Cerebrovascular accident (CVA) is a term used to characterize an ischemic or hemorrhagic vascular injury, which has got as main clinic manifestations, the motor and reflex function disturbance. In the first stage there is flaccidity and loss of voluntary movements that afterwards is substituted by mass patterns and spasticity. The spasticity brings with itself functional deficits and can generate negative impacts in various motor patterns. The aim of this research was to investigate the hyperreflexia and identify the immediate effects of transcutaneous nervous stimulation (TENS) and cryotherapy in the spasticity and electromyographic activity of hemiparetic subjects. The study is characterized as an almost experimental type, in which were selected, to compose the sample, 16 patients of both sex with CVA sequel. These individuals were evaluated by collecting the amplitude peak to peak and H reflex latency, Motor response (M response) in solear muscle and the electromyography (EMG) of the injured and healthy legs anterior tibial muscles. In the injured limb the evaluations occurred in different days for cryotherapy, TENS and control, in two moments, before and after the interventions. The healthy limb was evaluated one single time to serve as baseline, for comparison with the injured limb. It was used an statistic analysis, the t paired student test to identify the H reflex differences, latency and EMG of the injured and healthy limbs and to compare the results before and after the recourses application. The ANOVA for related samples was used to identify the differences among the recourses used. It was attributed for the statistic tests a significance level of 5%. The amplitude peak to peak of normalized maximum H reflex through the maximum motor response (Hmax/Mmax), showed itself significantly increased in the injured limb (p=0.0245). The H reflex latency was presented reduced in the injured limb (p=0, 0375). The electromyographic activity was showed decreased in the injured limb (p< 0.0001). After the TENS there was a Hmáx/Mmáx ratio decrease (0.60±0.16 versus 0.49.±0.18; P = 0.0006). Nonetheless, Just after the cryotherapy application there was an increase of Hmáx/Mmáx ratio (0.58 ± 0,15 to 0.77 ± 0.13, P=0,0007) and increase of signal latency (30.41 ± 1.87 versus 33.24 ± 2.19; P=0.0001). The electromyographic activity wasn t altered significantly by any resource. It was met statistic significant differences when the Hmáx/Mmáx P<0.0001) ratio and H reflex latency (P<0.0001) were compared between the post TENS, cryotherapy and control. One can conclude that the TENS can be used to spasticity immediate reduction, and that the cryotherapy can increase the hyperreflexia state in spastic patients. Nonetheless, the spasticity decrease or increase didn t provoke lectromyographic activity change in the muscle that is opponent to the spastic one
Resumo:
The aim of this work is to evaluate the mechanism of stock removal and the ground surface quality of advanced ceramics machined by a surface grinding process using diamond grinding wheels. The analysis of the grinding performance was done regarding the cutting surface wear behavior of the grinding wheel for ceramic workpieces. The ground surface was evaluated using Scanning Electron Microscopy (SEM). As a result it can be said that the mechanism of material removal in the grinding of ceramic is largely one of brittle fracture. The increase of the hmax can reduce the tangential force required by the process. Although, it results in an increase in the surface damage, reducing the mechanical properties of the ground component.