859 resultados para HIV-1 INFECTION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The contest between the host factor APOBEC3G (A3G) and the HIV-1 protein Vif presents an attractive target of intervention. The extent to which the A3G-Vif interaction must be suppressed to tilt the balance in favor of A3G remains unknown. We employed stochastic simulations and mathematical modeling of the within-host dynamics and evolution of HIV-1 to estimate the fraction of progeny virions that must incorporate A3G to render productive infection unsustainable. Using three different approaches, we found consistently that a transition from sustained infection to suppression of productive infection occurred when the latter fraction exceeded similar to 0.8. The transition was triggered by A3G-induced hypermutations that led to premature stop codons compromising viral production and was consistent with driving the basic reproductive number, R-o, below unity. The fraction identified may serve as a quantitative guideline for strategies targeting the A3G-Vif axis. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: In Old World monkeys, the tripartite motif Sec (TRIM5 alpha) protein confers resistance to HIV-1 infection following virus entry into host cells. However, the pig-tailed macaque (Macaca nemestrina) is an exception and is susceptible to HIV-1 in

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies showed that nonhuman primate TRIM5 alpha can efficiently block HIV-1 infection in human cell lines. It can also restrict other retroviruses, therefore, suggested as a general defender against retrovirus infection. Here, we present an evolutionary analysis of TRIM5 alpha in primates. Our results demonstrated that TRIM5a has been evolving rapidly in primates, which is likely caused by Darwinian positive selection. The SPRY domain of TRM5 alpha, which may be responsible for recognition of incoming viral capsids showed higher nonsynonymous/synonymous substitution ratios than the non-SPRY domain, indicating that the adaptive evolution of TRIM5a ill primates might be an innate strategy developed in defending retrovirus infection during primate evolution. In addition, the comparative protein sequence analysis suggested that the amino acid substitution pattern at a single site (344R/Q/P) located in the SPRY domain may explain the differences in Susceptibilities of HIV-1 infection in diverse primate species. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The humoral immune system plays a critical role in the clearance of numerous pathogens. In the setting of HIV-1 infection, the virus infects, integrates its genome into the host's cells, replicates, and establishes a reservoir of virus-infected cells. The initial antibody response to HIV-1 infection is targeted to non-neutralizing epitopes on HIV-1 Env gp41, and when a neutralizing response does develop months after transmission, it is specific for the autologous founder virus and the virus escapes rapidly. After continuous waves of antibody mediated neutralization and viral escape, a small subset of infected individuals eventually develop broad and potent heterologous neutralizing antibodies years after infection. In this dissertation, I have studied the ontogeny of mucosal and systemic antibody responses to HIV-1 infection by means of three distinct aims: 1. Determine the origin of the initial antibody response to HIV-1 infection. 2. Characterize the role of restricted VH and VL gene segment usage in shaping the antibody response to HIV-1 infection. 3. Determine the role of persistence of B cell clonal lineages in shaping the mutation frequencies of HIV-1 reactive antibodies.

After the introduction (Chapter 1) and methods (Chapter 2), Chapter 3 of this dissertation describes a study of the antibody response of terminal ileum B cells to HIV-1 envelope (Env) in early and chronic HIV-1 infection and provides evidence for the role of environmental antigens in shaping the repertoire of B cells that respond to HIV-1 infection. Previous work by Liao et al. demonstrated that the initial plasma cell response in the blood to acute HIV-1 infection is to gp41 and is derived from a polyreactive memory B cell pool. Many of these antibodies cross-reacted with commensal bacteria, Therefore, in Chapter 3, the relationship of intestinal B cell reactivity with commensal bacteria to HIV-1 infection-induced antibody response was probed using single B cell sorting, reverse transcription and nested polymerase chain reaction (RT- PCR) methods, and recombinant antibody technology. The dominant B cell response in the terminal ileum was to HIV-1 envelope (Env) gp41, and 82% of gp41- reactive antibodies cross-reacted with commensal bacteria whole cell lysates. Pyrosequencing of blood B cells revealed HIV-1 antibody clonal lineages shared between ileum and blood. Mutated IgG antibodies cross-reactive with both Env gp41 and commensal bacteria could also be isolated from the terminal ileum of HIV-1 uninfected individuals. Thus, the antibody response to HIV-1 can be shaped by intestinal B cells stimulated by commensal bacteria prior to HIV-1 infection to develop a pre-infection pool of memory B cells cross-reactive with HIV-1 gp41.

Chapter 4 details the study of restricted VH and VL gene segment usage for gp41 and gp120 antibody induction following acute HIV-1 infection; mutations in gp41 lead to virus enhanced neutralization sensitivity. The B cell repertoire of antibodies induced in a HIV-1 infected African individual, CAP206, who developed broadly neutralizing antibodies (bnAbs) directed to the HIV-1 envelope gp41 membrane proximal external region (MPER), is characterized. Understanding the selection of virus mutants by neutralizing antibodies is critical to understanding the role of antibodies in control of HIV-1 replication and prevention from HIV-1 infection. Previously, an MPER neutralizing antibody, CAP206-CH12, with the binding footprint identical to that of MPER broadly neutralizing antibody 4E10, that like 4E10 utilized the VH1-69 and VK3-20 variable gene segments was isolated from this individual (Morris et al., 2011). Using single B cell sorting, RT- PCR methods, and recombinant antibody technology, Chapter 4 describes the isolation of a VH1-69, Vk3-20 glycan-dependent clonal lineage from CAP206, targeted to gp120, that has the property of neutralizing a neutralization sensitive CAP206 transmitted/founder (T/F) and heterologous viruses with mutations at amino acids 680 or 681 in the MPER 4E10/CH12 binding site. These data demonstrate sites within the MPER bnAb epitope (aa 680-681) in which mutations can be selected that lead to viruses with enhanced sensitivity to autologous and heterologous neutralizing antibodies.

In Chapter 5, I have completed a comparison of evolution of B cell clonal lineages in two HIV-1 infected individuals who have a predominant VH1-69 response to HIV-1 infection--one who produces broadly neutralizing MPER-reactive mAbs and one who does not. Autologous neutralization in the plasma takes ~12 weeks to develop (Gray et al., 2007; Tomaras et al., 2008b). Only a small subset of HIV-1 infected individuals develops high plasma levels of broad and potent heterologous neutralization, and when it does occur, it typically takes 3-4 years to develop (Euler et al., 2010; Gray et al., 2007; 2011; Tomaras et al., 2011). The HIV-1 bnAbs that have been isolated to date have a number of unusual characteristics including, autoreactivity and high levels of somatic hypermutations, which are typically tightly regulated by immune control mechanisms (Haynes et al., 2005; 2012b; Kwong and Mascola, 2012; Scheid et al., 2009a). The VH mutation frequencies of bnAbs average ~15% but have been shown to be as high as 32% (reviewed in Mascola and Haynes, 2013; Kwong and Mascola, 2012). The high frequency of somatic hypermutations suggests that the B cell clonal lineages that eventually produce bnAbs undergo high-levels of affinity maturation, implying prolonged germinal center (GC) reactions and high levels of T cell help. To study the duration of HIV-1- reactive B cell clonal persistence, HIV-1 reactive and non HIV-1- reactive B cell clonal lineages were isolated from an HIV-1 infected individual that produces bnAbs, CAP206, and an HIV-1 infected individual who does not produce bnAbs, 004-0. Single B cell sorting, RT-PCR and recombinant antibody technology was used to isolate and produce monoclonal antibodies from multiple time points from each individual. B cell sequences clonally related to mAbs isolated by single cell PCR were identified within pyrosequences of longitudinal samples of these two individuals. Both individuals produced long-lived B cell clones that persisted from 0-232 weeks in CAP206, and 0-238 weeks in 004-0. The average length of persistence of clones containing members isolated from two separate time points was 91.5 weeks both individuals. Examples of the continued evolution of clonal lineages were observed in both the bnAb and non-bnAb individual. These data indicated that the ability to generate persistent and evolving B cell clonal lineages occurs in both bnAb and non-bnAb individuals, suggesting that some alternative host or viral factor is critical for the generation of highly mutated broadly neutralizing antibodies.

Together the studies described in Chapter 3-5 show that multiple factors influence the antibody response to HIV-1 infection. The initial antibody response to HIV-1 Env gp41 can be shaped by a B cell response to intestinal commensal bacteria prior to HIV-1 infection. VH and VL gene segment restriction can impact the B cell response to multiple HIV-1 antigens, and virus escape mutations in the MPER can confer enhanced neutralization sensitivity to autologous and heterologous antibodies. Finally, the ability to generate long-lived HIV-1 clonal lineages in and of itself does not confer on the host the ability to produce bnAbs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Dolutegravir (S/GSK1349572), a once-daily, unboosted integrase inhibitor, was recently approved in the United States for the treatment of human immunodeficiency virus type 1 (HIV-1) infection in combination with other antiretroviral agents. Dolutegravir, in combination with abacavir-lamivudine, may provide a simplified regimen. METHODS: We conducted a randomized, double-blind, phase 3 study involving adult participants who had not received previous therapy for HIV-1 infection and who had an HIV-1 RNA level of 1000 copies per milliliter or more. Participants were randomly assigned to dolutegravir at a dose of 50 mg plus abacavir-lamivudine once daily (DTG-ABC-3TC group) or combination therapy with efavirenz-tenofovir disoproxil fumarate (DF)-emtricitabine once daily (EFV-TDF-FTC group). The primary end point was the proportion of participants with an HIV-1 RNA level of less than 50 copies per milliliter at week 48. Secondary end points included the time to viral suppression, the change from baseline in CD4+ T-cell count, safety, and viral resistance. RESULTS: A total of 833 participants received at least one dose of study drug. At week 48, the proportion of participants with an HIV-1 RNA level of less than 50 copies per milliliter was significantly higher in the DTG-ABC-3TC group than in the EFV-TDF-FTC group (88% vs. 81%, P = 0.003), thus meeting the criterion for superiority. The DTG-ABC-3TC group had a shorter median time to viral suppression than did the EFV-TDF-FTC group (28 vs. 84 days, P<0.001), as well as greater increases in CD4+ T-cell count (267 vs. 208 per cubic millimeter, P<0.001). The proportion of participants who discontinued therapy owing to adverse events was lower in the DTG-ABC-3TC group than in the EFV-TDF-FTC group (2% vs. 10%); rash and neuropsychiatric events (including abnormal dreams, anxiety, dizziness, and somnolence) were significantly more common in the EFV-TDF-FTC group, whereas insomnia was reported more frequently in the DTG-ABC-3TC group. No participants in the DTG-ABC-3TC group had detectable antiviral resistance; one tenofovir DF-associated mutation and four efavirenz-associated mutations were detected in participants with virologic failure in the EFV-TDF-FTC group. CONCLUSIONS: Dolutegravir plus abacavir-lamivudine had a better safety profile and was more effective through 48 weeks than the regimen with efavirenz-tenofovir DF-emtricitabine. Copyright © 2013 Massachusetts Medical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les cellules T CD8+ jouent un rôle primordial dans le contrôle des infections virales en limitant la dissémination des cellules infectées. Lors de l’infection chronique par le virus HIV, les cellules T CD8+ HIV-spécifiques ne se différencient pas en cellules effectrices fonctionnelles capables de tuer les cellules infectées par le virus ; ces cellules ne sont plus capables de proliférer ou de produire l’ IL-2. Ces cellules expriment PD-1 et l’engagement de PD-1, par son ligand, aboutit a plusieurs de ces déficits fonctionnels des cellules T . Le rôle de PD-1 dans la régulation d'évènements transcriptionnels contrôlant la différentiation et l'obtention des fonction effectrices des cellules T CD8+ reste à démontrer. Id2 joue un rôle central dans la différenciation des cellules T CD8+ effectrices. Nous avons émis l’hypothèse que le défaut de maturation observé chez les cellules T CD8+ PD-1 high HIV-spécifiques (CD8+PD-1hi) au cours de l’infection chronique par le virus HIV pouvait être lié à la diminution d’expression du régulateur Id2. Nous avons ainsi démontré que l'engagement de PD-1 contribuait à une diminution d'expression de Id2 et de ses cibles transcriptionnelles. La surexpression de Id2 de ces cellules a permis de restaurer l'expression de marqueurs tels que Granzyme B et Bcl-2 et diminuir l’expression du marqueur de maturation de CD27. La famille des cytokines à chaine gamma joue un rôle clef dans la survie et l’homéostasie des cellules T. Dans ce travail, nous avons démontré que l’IL-15 était unique grâce à ses capacités de stimulation de l’expression d’Id2 et ses propriétés favorisant la survie ainsi que la différenciation des cellules T CD8+ effectrices. l’IL-15 induit la prolifération de toutes les populations de cellules T mémoires provenant de donneurs sains. L’addition de cette cytokine aux sous-populations cellulaires Ttm et Tem a permis leur différenciation en cellules effectrices capables de produire Granzyme B alors que la stimulation par l’IL-15 des cellules Tcm ne favorise pas leur différenciation. Un test de cytotoxicitié par cytométrie en flux nous a permis de confirmer que la stimulation de cellules T CD8+ HIV spécifiques par l’IL-15 favorisait l’expression de Id2 et restaurait les fonctions cytotoxiques des cellules T CD8+ HIV spécifiques. En conclusion, nous avons pour la première fois dans cette thèse défini les mécanismes moléculaires impliqués dans la modulation de l’expression du régulateur transcriptionnel Id2 par l’IL-15. Nous avons également révélé comment l’engagement de PD-1 conduisait a une altération de l’expression et de la fonction d’Id2 et favorisait la diminution des fonctions effectrices des cellules T CD8-HIV spécifiques. Une perspective de traitement avec des agents tels que l’IL-15 ou le bloquage de PD-1, en combinaison avec les traitements conventionnels, pourrait contribuer à une meilleure stimulation des réponses immunes favorisant ainsi la réactivation des cellules T CD8+ et permettant la destruction de cellules T CD4+ infectées de manière latente.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intestinal microbiota consists of a qualitatively and quantitatively diverse range of microorganisms dynamically interacting with the host. It is remarkably stable with regard to the presence of microorganisms and their roles which, however, can be altered due to pathological conditions, diet composition, gastrointestinal disturbances and/or drug ingestion. The present review aimed at contributing to the discussion about changes in the intestinal microbiota due to HIV-1 infection, focusing on the triad infection-microbiota-nutrition as factors that promote intestinal bacterial imbalance. Intestinal microbiota alterations can be due to the HIV-1 infection as a primary factor or the pharmacotherapy employed, or they can be one of the consequences of the disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The involvement of inflammasome genes in the susceptibility to HIV-1 infection was investigated. Twelve single nucleotide polymorphisms within NLRP1, NLRP3, NLRC4, CARD8, CASP1, and IL1B genes were analyzed in 150 HIV-1-infected Brazilian subjects and 158 healthy controls. The 2 polymorphisms rs10754558 in NLRP3 and rs1143634 in IL1B were significantly associated to the HIV-1 infection. These findings supported the previously hypothesized involvement of NALP3-inflammasome in HIV-1 pathogenesis, underlining once more the key role of inflammation and innate immunity in the susceptibility to HIV-1 infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Translational errors can result in bypassing of the main viral protein reading frames and the production of alternate reading frame (ARF) or cryptic peptides. Within HIV, there are many such ARFs in both sense and the antisense directions of transcription. These ARFs have the potential to generate immunogenic peptides called cryptic epitopes (CE). Both antiretroviral drug therapy and the immune system exert a mutational pressure on HIV-1. Immune pressure exerted by ARF CD8(+) T cells on the virus has already been observed in vitro. HAART has also been described to select HIV-1 variants for drug escape mutations. Since the mutational pressure exerted on one location of the HIV-1 genome can potentially affect the 3 reading frames, we hypothesized that ARF responses would be affected by this drug pressure in vivo. Methodology/Principal findings: In this study we identified new ARFs derived from sense and antisense transcription of HIV-1. Many of these ARFs are detectable in circulating viral proteins. They are predominantly found in the HIV-1 env nucleotide region. We measured T cell responses to 199 HIV-1 CE encoded within 13 sense and 34 antisense HIV-1 ARFs. We were able to observe that these ARF responses are more frequent and of greater magnitude in chronically infected individuals compared to acutely infected patients, and in patients on HAART, the breadth of ARF responses increased. Conclusions/Significance: These results have implications for vaccine design and unveil the existence of potential new epitopes that could be included as vaccine targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The first stages of HIV-1 infection are essential to establish the diversity of virus population within host. It has been suggested that adaptation to host cells and antibody evasion are the leading forces driving HIV evolution at the initial stages of AIDS infection. In order to gain more insights on adaptive HIV-1 evolution, the genetic diversity was evaluated during the infection time in individuals contaminated by the same viral source in an epidemic cluster. Multiple sequences of V3 loop region of the HIV-1 were serially sampled from four individuals: comprising a single blood donor, two blood recipients, and another sexually infected by one of the blood recipients. The diversity of the viral population within each host was analyzed independently in distinct time points during HIV-1 infection. Results: Phylogenetic analysis identified multiple HIV-1 variants transmitted through blood transfusion but the establishing of new infections was initiated by a limited number of viruses. Positive selection (d(N)/d(S)>1) was detected in the viruses within each host in all time points. In the intra-host viruses of the blood donor and of one blood recipient, X4 variants appeared respectively in 1993 and 1989. In both patients X4 variants never reached high frequencies during infection time. The recipient, who X4 variants appeared, developed AIDS but kept narrow and constant immune response against HIV-1 during the infection time. Conclusion: Slowing rates of adaptive evolution and increasing diversity in HIV-1 are consequences of the CD4+ T cells depletion. The dynamic of R5 to X4 shift is not associated with the initial amplitude of humoral immune response or intensity of positive selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Prognostic models have been developed for patients infected with HIV-1 who start combination antiretroviral therapy (ART) in high-income countries, but not for patients in sub-Saharan Africa. We developed two prognostic models to estimate the probability of death in patients starting ART in sub-Saharan Africa. Methods We analysed data for adult patients who started ART in four scale-up programmes in Côte d'Ivoire, South Africa, and Malawi from 2004 to 2007. Patients lost to follow-up in the first year were excluded. We used Weibull survival models to construct two prognostic models: one with CD4 cell count, clinical stage, bodyweight, age, and sex (CD4 count model); and one that replaced CD4 cell count with total lymphocyte count and severity of anaemia (total lymphocyte and haemoglobin model), because CD4 cell count is not routinely measured in many African ART programmes. Death from all causes in the first year of ART was the primary outcome. Findings 912 (8·2%) of 11 153 patients died in the first year of ART. 822 patients were lost to follow-up and not included in the main analysis; 10 331 patients were analysed. Mortality was strongly associated with high baseline CD4 cell count (≥200 cells per μL vs <25; adjusted hazard ratio 0·21, 95% CI 0·17–0·27), WHO clinical stage (stages III–IV vs I–II; 3·45, 2·43–4·90), bodyweight (≥60 kg vs <45 kg; 0·23, 0·18–0·30), and anaemia status (none vs severe: 0·27, 0·20–0·36). Other independent risk factors for mortality were low total lymphocyte count, advanced age, and male sex. Probability of death at 1 year ranged from 0·9% (95% CI 0·6–1·4) to 52·5% (43·8–61·7) with the CD4 model, and from 0·9% (0·5–1·4) to 59·6% (48·2–71·4) with the total lymphocyte and haemoglobin model. Both models accurately predict early mortality in patients starting ART in sub-Saharan Africa compared with observed data. Interpretation Prognostic models should be used to counsel patients, plan health services, and predict outcomes for patients with HIV-1 infection in sub-Saharan Africa.