915 resultados para HIV cell-to-cell fusion
Resumo:
Recent studies demonstrated that a synthetic fusion peptide of HIV-1 self-associates in phospholipid membranes and inhibits HIV-1 envelope glycoprotein-mediated cell fusion, presumably by interacting with the N-terminal domain of gp41 and forming inactive heteroaggregates [Kliger, Y., Aharoni, A., Rapaport, D., Jones, P., Blumenthal, R. & Shai, Y. (1997) J. Biol. Chem. 272, 13496–13505]. Here, we show that a synthetic all d-amino acid peptide corresponding to the N-terminal sequence of HIV-1 gp41 (D-WT) of HIV-1 associates with its enantiomeric wild-type fusion (WT) peptide in the membrane and inhibits cell fusion mediated by the HIV-1 envelope glycoprotein. D-WT does not inhibit cell fusion mediated by the HIV-2 envelope glycoprotein. WT and D-WT are equally potent in inducing membrane fusion. D-WT peptide but not WT peptide is resistant to proteolytic digestion. Structural analysis showed that the CD spectra of D-WT in trifluoroethanol/water is a mirror image of that of WT, and attenuated total reflectance–fourier transform infrared spectroscopy revealed similar structures and orientation for the two enantiomers in the membrane. The results reveal that the chirality of the synthetic peptide corresponding to the HIV-1 gp41 N-terminal sequence does not play a role in liposome fusion and that the peptides’ chirality is not necessarily required for peptide–peptide interaction within the membrane environment. Furthermore, studies along these lines may provide criteria to design protease-resistant therapeutic agents against HIV and other viruses.
Resumo:
The β-chemokine receptor CCR-5 is essential for the efficient entry of primary macrophage-tropic HIV-1 isolates into CD4+ target cells. To study CCR-5-dependent cell-to-cell fusion, we have developed an assay system based on the infection of CD4+ CCR-5+ HeLa cells with a Semliki Forest virus recombinant expressing the gp120/gp41 envelope (Env) from a primary clade B HIV-1 isolate (BX08), or from a laboratory T cell line-adapted strain (LAI). In this system, gp120/gp41 of the “nonsyncytium-inducing,” primary, macrophage-tropic HIV-1BX08 isolate, was at least as fusogenic as that of the “syncytium-inducing” HIV-1LAI strain. BX08 Env-mediated fusion was inhibited by the β-chemokines RANTES (regulated upon activation, normal T cell expressed and secreted) and macrophage inflammatory proteins 1β (MIP-1β) and by antibodies to CD4, whereas LAI Env-mediated fusion was insensitive to these β-chemokines. In contrast soluble CD4 significantly reduced LAI, but not BX08 Env-mediated fusion, suggesting that the primary isolate Env glycoprotein has a reduced affinity for CD4. The domains in gp120/gp41 involved in the interaction with the CD4 and CCR-5 molecules were probed using monoclonal antibodies. For the antibodies tested here, the greatest inhibition of fusion was observed with those directed to conformation-dependent, rather than linear epitopes. Efficient inhibition of fusion was not restricted to epitopes in any one domain of gp120/gp41. The assay was sufficiently sensitive to distinguish between antibody- and β-chemokine-mediated fusion inhibition using serum samples from patient BX08, suggesting that the system may be useful for screening human sera for the presence of biologically significant antibodies.
Resumo:
Poster presented at the 7th iMed.ULisboa Postgraduate Students Meeting. Lisbon, 15 July 2015
Resumo:
Reduced expression of CCR5 on target CD4(+) cells lowers their susceptibility to infection by R5-tropic HIV-1, potentially preventing transmission of infection and delaying disease progression. Binding of the HIV-1 envelope (Env) protein gp120 with CCR5 is essential for the entry of R5 viruses into target cells. The threshold surface density of gp120-CCR5 complexes that enables HIV-1 entry remains poorly estimated. We constructed a mathematical model that mimics Env-mediated cell-cell fusion assays, where target CD4(+)CCR5(+) cells are exposed to effector cells expressing Env in the presence of a coreceptor antagonist and the fraction of target cells fused with effector cells is measured. Our model employs a reaction network-based approach to describe protein interactions that precede viral entry coupled with the ternary complex model to quantify the allosteric interactions of the coreceptor antagonist and predicts the fraction of target cells fused. By fitting model predictions to published data of cell-cell fusion in the presence of the CCR5 antagonist vicriviroc, we estimated the threshold surface density of gp120-CCR5 complexes for cell-cell fusion as similar to 20 mu m(-2). Model predictions with this threshold captured data from independent cell-cell fusion assays in the presence of vicriviroc and rapamycin, a drug that modulates CCR5 expression, as well as assays in the presence of maraviroc, another CCR5 antagonist, using sixteen different Env clones derived from transmitted or early founder viruses. Our estimate of the threshold surface density of gp120-CCR5 complexes necessary for HIV-1 entry thus appears robust and may have implications for optimizing treatment with coreceptor antagonists, understanding the non-pathogenic infection of non-human primates, and designing vaccines that suppress the availability of target CD4(+)CCR5(+) cells.
Resumo:
OBJECTIVE To illustrate an approach to compare CD4 cell count and HIV-RNA monitoring strategies in HIV-positive individuals on antiretroviral therapy (ART). DESIGN Prospective studies of HIV-positive individuals in Europe and the USA in the HIV-CAUSAL Collaboration and The Center for AIDS Research Network of Integrated Clinical Systems. METHODS Antiretroviral-naive individuals who initiated ART and became virologically suppressed within 12 months were followed from the date of suppression. We compared 3 CD4 cell count and HIV-RNA monitoring strategies: once every (1) 3 ± 1 months, (2) 6 ± 1 months, and (3) 9-12 ± 1 months. We used inverse-probability weighted models to compare these strategies with respect to clinical, immunologic, and virologic outcomes. RESULTS In 39,029 eligible individuals, there were 265 deaths and 690 AIDS-defining illnesses or deaths. Compared with the 3-month strategy, the mortality hazard ratios (95% CIs) were 0.86 (0.42 to 1.78) for the 6 months and 0.82 (0.46 to 1.47) for the 9-12 month strategy. The respective 18-month risk ratios (95% CIs) of virologic failure (RNA >200) were 0.74 (0.46 to 1.19) and 2.35 (1.56 to 3.54) and 18-month mean CD4 differences (95% CIs) were -5.3 (-18.6 to 7.9) and -31.7 (-52.0 to -11.3). The estimates for the 2-year risk of AIDS-defining illness or death were similar across strategies. CONCLUSIONS Our findings suggest that monitoring frequency of virologically suppressed individuals can be decreased from every 3 months to every 6, 9, or 12 months with respect to clinical outcomes. Because effects of different monitoring strategies could take years to materialize, longer follow-up is needed to fully evaluate this question.
Resumo:
A challenge for subunit vaccines whose goal is to elicit CD8+ cytotoxic T lymphocytes (CTLs) is to deliver the antigen to the cytosol of the living cell, where it can be processed for presentation by major histocompatibility complex (MHC) class I molecules. Several bacterial toxins have evolved to efficiently deliver catalytic protein moieties to the cytosol of eukaryotic cells. Anthrax lethal toxin consists of two distinct proteins that combine to form the active toxin. Protective antigen (PA) binds to cells and is instrumental in delivering lethal factor (LF) to the cell cytosol. To test whether the lethal factor protein could be exploited for delivery of exogenous proteins to the MHC class I processing pathway, we constructed a genetic fusion between the amino-terminal 254 aa of LF and the gp120 portion of the HIV-1 envelope protein. Cells treated with this fusion protein (LF254-gp120) in the presence of PA effectively processed gp120 and presented an epitope recognized by HIV-1 gp120 V3-specific CTL. In contrast, when cells were treated with the LF254-gp120 fusion protein and a mutant PA protein defective for translocation, the cells were not able to present the epitope and were not lysed by the specific CTL. The entry into the cytosol and dependence on the classical cytosolic MHC class I pathway were confirmed by showing that antigen presentation by PA + LF254-gp120 was blocked by the proteasome inhibitor lactacystin. These data demonstrate the ability of the LF amino-terminal fragment to deliver antigens to the MHC class I pathway and provide the basis for the development of novel T cell vaccines.
Resumo:
Purpose: To investigate whether UL43 protein, which is highly conserved in alpha- and gamma herpes viruses, and a non-glycosylated transmembrane protein, is involved in virus entry and virus-induced cell fusion. Methods: Mutagenesis was accomplished by a markerless two-step Red recombination mutagenesis system implemented on the Herpes simplex virus 1 (HSV-1) bacterial artificial chromosome (BAC). Growth properties of HSV-1 UL43 mutants were analyzed using plaque morphology and one-step growth kinetics. SDS-PAGE and Western blot was employed to assay the synthesis of the viral glycoproteins. Virus-penetration was assayed to determine if UL43 protein is required for efficient virus entry. Results: Lack of UL43 expression resulted in significantly reduced plaque sizes of syncytial mutant viruses and inhibited cell fusion induced by gBΔ28 or gKsyn20 (p < 0.05). Deletion of UL43 did not affect overall expression levels of viral glycoproteins gB, gC, gD, and gH on HSV-1(F) BAC infected cell surfaces. Moreover, mutant viruses lacking UL43 gene exhibited slower kinetics of entry into Vero cells than the parental HSV-1(F) BAC. Conclusion: Thus, these results suggest an important role for UL43 protein in mediating virus-induced membrane fusion and efficient entry of virion into target cells.
Resumo:
The human immunodeficiency virus (HIV) envelope (Env) glycoprotein (gp) 120 is a highly disulfide-bonded molecule that attaches HIV to the lymphocyte surface receptors CD4 and CXCR4. Conformation changes within gp120 result from binding and trigger HIV/cell fusion. Inhibition of lymphocyte surface-associated protein-disulfide isomerase (PDI) blocks HIV/cell fusion, suggesting that redox changes within Env are required. Using a sensitive assay based on a thiol reagent, we show that (i) the thiol content of gp120, either secreted by mammalian cells or bound to a lymphocyte surface enabling CD4 but not CXCR4 binding, was 0.5-1 pmol SH/pmol gp120 (SH/gp120), whereas that of gp120 after its interaction with a surface enabling both CD4 and CXCR4 binding was raised to 4 SH/gp120; (ii) PDI inhibitors prevented this change; and (iii) gp120 displaying 2 SH/gp120 exhibited CD4 but not CXCR4 binding capacity. In addition, PDI inhibition did not impair gp120 binding to receptors. We conclude that on average two of the nine disulfides of gp120 are reduced during interaction with the lymphocyte surface after CXCR4 binding prior to fusion and that cell surface PDI catalyzes this process. Disulfide bond restructuring within Env may constitute the molecular basis of the post-receptor binding conformational changes that induce fusion competence.
Resumo:
Canine distemper virus (CDV) causes a chronic, demyelinating, progressive or relapsing neurological disease in dogs, because CDV persists in the CNS. Persistence of virulent CDV, such as the A75/17 strain has been reproduced in cell cultures where it is associated with a non-cytolytic infection with very limited cell-cell fusion. This is in sharp contrast to attenuated CDV infection in cell cultures, such as the Onderstepoort (OP) CDV strain, which produces extensive fusion activity and cytolysis. Fusion efficiency may be determined by the structure of the viral fusion protein per se but also by its interaction with other structural proteins of CDV. This was studied by combining genes derived from persistent and non-persistent CDV strains in transient transfection experiments. It was found that fusion efficiency was markedly attenuated by the structure of the fusion protein of the neurovirulent A75/17-CDV. Moreover, we showed that the interaction of the surface glycoproteins with the M protein of the persistent strain greatly influenced fusion activity. Site directed mutagenesis showed that the c-terminus of the M protein is of particular importance in this respect. Interestingly, although the nucleocapsid protein alone did not affect F/H-induced cell-cell fusion, maximal inhibition occurred when the latter was added to combined glycoproteins with matrix protein. Thus, the present study suggests that very limited fusogenicity in virulent CDV infection, which favours persistence by limiting cell destruction involves complex interactions between all viral structural proteins.
Resumo:
FGFRL1 is a single-pass transmembrane protein with three extracellular Ig domains. When overexpressed in CHO cells or related cell types, it induces cell-cell fusion and formation of large, multinucleated syncytia. For this fusion-promoting activity, only the membrane-proximal Ig domain (Ig3) and the transmembrane domain are required. It does not matter whether the transmembrane domain is derived from FGFRL1 or from another receptor, but the distance of the Ig3 domain to the membrane is crucial. Fusion can be inhibited with soluble recombinant proteins comprising the Ig1-Ig2-Ig3 or the Ig2-Ig3 domains as well as with monoclonal antibodies directed against Ig3. Mutational analysis reveals a hydrophobic site in Ig3 that is required for fusion. If a single amino acid from this site is mutated, fusion is abolished. The site is located on a β-sheet, which is part of a larger β-barrel, as predicted by computer modeling of the 3D structure of FGFRL1. It is possible that this site interacts with a target protein of neighboring cells to trigger cell-cell fusion.
Resumo:
Cell fusion in yeast is the process by which two haploid cells fuse to form a diploid zygote. To dissect the pathway of cell fusion, we phenotypically and genetically characterized four cell fusion mutants, fus6/spa2, fus7/rvs161, fus1, and fus2. First, we examined the complete array of single and double mutants. In all cases but one, double mutants exhibited stronger cell fusion defects than single mutants. The exception was rvs161Δ fus2Δ, suggesting that Rvs161p and Fus2p act in concert. Dosage suppression analysis showed that Fus1p and Fus2p act downstream or parallel to Rvs161p and Spa2p. Second, electron microscopic analysis was used to define the mutant defects in cell fusion. In wild-type prezygotes vesicles were aligned and clustered across the cell fusion zone. The vesicles were associated with regions of cell wall thinning. Analysis of Fus− zygotes indicated that Fus1p was required for the normal localization of the vesicles to the zone of cell fusion, and Spa2p facilitated their clustering. In contrast, Fus2p and Rvs161p appeared to act after vesicle positioning. These findings lead us to propose that cell fusion is mediated in part by the localized release of vesicles containing components essential for cell fusion.
Resumo:
Retrocyclin-1, a 0-defensin, protects target cells from human immunodeficiency virus, type 1 (HIV-1) by preventing viral entry. To delineate its mechanism, we conducted fusion assays between susceptible target cells and effector cells that expressed HIV-1 Env. Retrocyclin-1 (4 mu M) completely blocked fusion mediated by HIV-1 Envs that used CXCR4 or CCR5 but had little effect on cell fusion mediated by HIV-2 and simian immunodeficiency virus Envs. Retrocyclin-1 inhibited HIV-1 Env-mediated fusion without impairing the lateral mobility of CD4, and it inhibited the fusion of CD4-deficient cells with cells bearing CD4-independent HIV-1 Env. Thus, it could act without cross-linking membrane proteins or inhibiting gp120-CD4 interactions. Retrocyclin-1 acted late in the HIV-1 Env fusion cascade but prior to 6-helix bundle formation. Surface plasmon resonance experiments revealed that retrocyclin bound the ectodomain of gp41 with high affinity in a glycan-independent manner and that it bound selectively to the gp41 C-terminal heptad repeat. Native-PAGE, enzyme-linked immunosorbent assay, and CD spectroscopic analyses all revealed that retrocyclin-1 prevented 6-helix bundle formation. This mode of action, although novel for an innate effector molecule, resembles the mechanism of peptidic entry inhibitors based on portions of the gp41 sequence.
Resumo:
Syntaxin 11 (Stx11) is a SNARE protein enriched in cells of the immune system. Loss or mutation of Stx11 results in familial hemophagocytic lymphohistiocytosis type-4 (FHL-4), an autosomal recessive disorder of immune dysregulation characterized by high levels of inflammatory cytokines along with defects in T-cell and natural killer cell function. We show here Stx11 is located on endosomalmembranes including late endosomes and lysosomes in macrophages. While Stx11 did not form a typical trans-SNARE complex, it did bind to the Q-SNARE Vti1b and was able to regulate the availability of Vti1b to form the Q-SNARE complexes Stx6/Stx7/Vtib and Stx7/Stx8/Vti1b. The mutant form of Stx11 sequestered Vti1b from forming the Q-SNARE complex that mediates late endosome to lysosome fusion. Depletion of Stx11 in activated macrophages leads to an accumulation of enlarged late endocytic compartments, increased trafficking to the cell surface and inhibition of late endosome to lysosome fusion. These phenotypes arerescued by the expression of an siRNA-resistant Stx11 construct in Stx11-depleted cells. Our results suggest that by regulating the availability of Vti1b, Stx11 regulates trafficking steps between late endosomes, lysosomes and the cell surface in macrophages.