975 resultados para HIPPOCAMPAL THETA-RHYTHM


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many lines of evidence indicate that theta rhythm, a prominent neural oscillatory mode found in the mammalian hippocampus, plays a key role in the acquisition, processing, and retrieval of memories. However, a predictive neurophysiological feature of the baseline theta rhythm that correlates with the learning rate across different animals has yet to be identified. Here we show that the mean theta rhythm speed observed during baseline periods of immobility has a strong positive correlation with the rate at which rats learn an operant task. This relationship is observed across rats, during both quiet waking (r=0.82; p<0.01) and paradoxical sleep (r=0.83; p<0.01), suggesting that the basal theta frequency relates to basic neurological processes that are important in the acquisition of operant behavior. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The processing of spatial and mnemonic information is believed to depend on hippocampal theta oscillations (5–12 Hz). However, in rats both the power and the frequency of the theta rhythm are modulated by locomotor activity, which is a major confounding factor when estimating its cognitive correlates. Previous studies have suggested that hippocampal theta oscillations support decision-making processes. In this study, we investigated to what extent spatial decision making modulates hippocampal theta oscillations when controlling for variations in locomotion speed. We recorded local field potentials from the CA1 region of rats while animals had to choose one arm to enter for reward (goal) in a four-arm radial maze. We observed prominent theta oscillations during the decision-making period of the task, which occurred in the center of the maze before animals deliberately ran through an arm toward goal location. In speed-controlled analyses, theta power and frequency were higher during the decision period when compared to either an intertrial delay period (also at the maze center), or to the period of running toward goal location. In addition, theta activity was higher during decision periods preceding correct choices than during decision periods preceding incorrect choices. Altogether, our data support a cognitive function for the hippocampal theta rhythm in spatial decision making

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The processing of spatial and mnemonic information is believed to depend on hippocampal theta oscillations (5–12 Hz). However, in rats both the power and the frequency of the theta rhythm are modulated by locomotor activity, which is a major confounding factor when estimating its cognitive correlates. Previous studies have suggested that hippocampal theta oscillations support decision-making processes. In this study, we investigated to what extent spatial decision making modulates hippocampal theta oscillations when controlling for variations in locomotion speed. We recorded local field potentials from the CA1 region of rats while animals had to choose one arm to enter for reward (goal) in a four-arm radial maze. We observed prominent theta oscillations during the decision-making period of the task, which occurred in the center of the maze before animals deliberately ran through an arm toward goal location. In speed-controlled analyses, theta power and frequency were higher during the decision period when compared to either an intertrial delay period (also at the maze center), or to the period of running toward goal location. In addition, theta activity was higher during decision periods preceding correct choices than during decision periods preceding incorrect choices. Altogether, our data support a cognitive function for the hippocampal theta rhythm in spatial decision making

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The processing of spatial and mnemonic information is believed to depend on hippocampal theta oscillations (5–12 Hz). However, in rats both the power and the frequency of the theta rhythm are modulated by locomotor activity, which is a major confounding factor when estimating its cognitive correlates. Previous studies have suggested that hippocampal theta oscillations support decision-making processes. In this study, we investigated to what extent spatial decision making modulates hippocampal theta oscillations when controlling for variations in locomotion speed. We recorded local field potentials from the CA1 region of rats while animals had to choose one arm to enter for reward (goal) in a four-arm radial maze. We observed prominent theta oscillations during the decision-making period of the task, which occurred in the center of the maze before animals deliberately ran through an arm toward goal location. In speed-controlled analyses, theta power and frequency were higher during the decision period when compared to either an intertrial delay period (also at the maze center), or to the period of running toward goal location. In addition, theta activity was higher during decision periods preceding correct choices than during decision periods preceding incorrect choices. Altogether, our data support a cognitive function for the hippocampal theta rhythm in spatial decision making

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thereis now growing evidencethatthe hippocampus generatestheta rhythmsthat can phase biasfast neural oscillationsinthe neocortex, allowing coordination of widespread fast oscillatory populations outside limbic areas. A recent magnetoencephalographic study showed that maintenance of configural-relational scene information in a delayed match-to-sample (DMS) task was associated with replay of that information during the delay period. The periodicity of the replay was coordinated by the phase of the ongoing theta rhythm, and the degree of theta coordination during the delay period was positively correlated with DMS performance. Here, we reanalyzed these data to investigate which brain regions were involved in generating the theta oscillations that coordinated the periodic replay of configural- relational information. We used a beamformer algorithm to produce estimates of regional theta rhythms and constructed volumetric images of the phase-locking between the local theta cycle and the instances of replay (in the 13- 80 Hz band). We found that individual differences in DMS performancefor configural-relational associations were relatedtothe degree of phase coupling of instances of cortical reactivations to theta oscillations generated in the right posterior hippocampus and the right inferior frontal gyrus. This demonstrates that the timing of memory reactivations in humans is biased toward hippocampal theta phase

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural phase signaling has gained attention as a putative coding mechanism through which the brain binds the activity of neurons across distributed brain areas to generate thoughts, percepts, and behaviors. Neural phase signaling has been shown to play a role in various cognitive processes, and it has been suggested that altered phase signaling may play a role in mediating the cognitive deficits observed across neuropsychiatric illness. Here, we investigated neural phase signaling in two mouse models of cognitive dysfunction: mice with genetically induced hyperdopaminergia [dopamine transporter knock-out (DAT-KO) mice] and mice with genetically induced NMDA receptor hypofunction [NMDA receptor subunit-1 knockdown (NR1-KD) mice]. Cognitive function in these mice was assessed using a radial-arm maze task, and local field potentials were recorded from dorsal hippocampus and prefrontal cortex as DAT-KO mice, NR1-KD mice, and their littermate controls engaged in behavioral exploration. Our results demonstrate that both DAT-KO and NR1-KD mice display deficits in spatial cognitive performance. Moreover, we show that persistent hyperdopaminergia alters interstructural phase signaling, whereas NMDA receptor hypofunction alters interstructural and intrastructural phase signaling. These results demonstrate that dopamine and NMDA receptor dependent glutamate signaling play a critical role in coordinating neural phase signaling, and encourage further studies to investigate the role that deficits in phase signaling play in mediating cognitive dysfunction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapid-eye movement (REM) sleep correlates with neuronal activity in the brainstem, basal forebrain and lateral hypothalamus. Lateral hypothalamus melanin-concentrating hormone (MCH)-expressing neurons are active during sleep, but their effects on REM sleep remain unclear. Using optogenetic tools in newly generated Tg(Pmch-cre) mice, we found that acute activation of MCH neurons (ChETA, SSFO) at the onset of REM sleep extended the duration of REM, but not non-REM, sleep episodes. In contrast, their acute silencing (eNpHR3.0, archaerhodopsin) reduced the frequency and amplitude of hippocampal theta rhythm without affecting REM sleep duration. In vitro activation of MCH neuron terminals induced GABAA-mediated inhibitory postsynaptic currents in wake-promoting histaminergic neurons of the tuberomammillary nucleus (TMN), and in vivo activation of MCH neuron terminals in TMN or medial septum also prolonged REM sleep episodes. Collectively, these results suggest that activation of MCH neurons maintains REM sleep, possibly through inhibition of arousal circuits in the mammalian brain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Astute control of brain activity states is critical for adaptive behaviours and survival. In mammals and birds, electroencephalographic recordings reveal alternating states of wakefulness, slow wave sleep and paradoxical sleep (or rapid eye movement sleep). This control is profoundly impaired in narcolepsy with cataplexy, a disease resulting from the loss of orexin/hypocretin neurotransmitter signalling in the brain. Narcolepsy with cataplexy is characterized by irresistible bouts of sleep during the day, sleep fragmentation during the night and episodes of cataplexy, a sudden loss of muscle tone while awake and experiencing emotions. The neural mechanisms underlying cataplexy are unknown, but commonly thought to involve those of rapid eye movement-sleep atonia, and cataplexy typically is considered as a rapid eye movement sleep disorder. Here we reassess cataplexy in hypocretin (Hcrt, also known as orexin) gene knockout mice. Using a novel video/electroencephalogram double-blind scoring method, we show that cataplexy is not a state per se, as believed previously, but a dynamic, multi-phased process involving a reproducible progression of states. A knockout-specific state and a stereotypical paroxysmal event were introduced to account for signals and electroencephalogram spectral characteristics not seen in wild-type littermates. Cataplexy almost invariably started with a brief phase of wake-like electroencephalogram, followed by a phase featuring high-amplitude irregular theta oscillations, defining an activity profile distinct from paradoxical sleep, referred to as cataplexy-associated state and in the course of which 1.5-2 s high-amplitude, highly regular, hypersynchronous paroxysmal theta bursts (∼7 Hz) occurred. In contrast to cataplexy onset, exit from cataplexy did not show a predictable sequence of activities. Altogether, these data contradict the hypothesis that cataplexy is a state similar to paradoxical sleep, even if long cataplexies may evolve into paradoxical sleep. Although not exclusive to overt cataplexy, cataplexy-associated state and hypersynchronous paroxysmal theta activities are highly enriched during cataplexy in hypocretin/orexin knockout mice. Their occurrence in an independent narcolepsy mouse model, the orexin/ataxin 3 transgenic mouse, undergoing loss of orexin neurons, was confirmed. Importantly, we document for the first time similar paroxysmal theta hypersynchronies (∼4 Hz) during cataplexy in narcoleptic children. Lastly, we show by deep recordings in mice that the cataplexy-associated state and hypersynchronous paroxysmal theta activities are independent of hippocampal theta and involve the frontal cortex. Cataplexy hypersynchronous paroxysmal theta bursts may represent medial prefrontal activity, associated in humans and rodents with reward-driven motor impulse, planning and conflict monitoring.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mismatch negativity is an electrophysiological marker of auditory change detection in the event-related brain potential and has been proposed to reflect an automatic comparison process between an incoming stimulus and the representation of prior items in a sequence. There is evidence for two main functional subcomponents comprising the MMN, generated by temporal and frontal brain areas, respectively. Using data obtained in an MMN paradigm, we performed time-frequency analysis to reveal the changes in oscillatory neural activity in the theta band. The results suggest that the frontal component of the MMN is brought about by an increase in theta power for the deviant trials and, possibly, by an additional contribution of theta phase alignment. By contrast, the temporal component of the MMN, best seen in recordings from mastoid electrodes, is generated by phase resetting of theta rhythm with no concomitant power modulation. Thus, frontal and temporal MMN components do not only differ with regard to their functional significance but also appear to be generated by distinct neurophysiological mechanisms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Miriam S. Nokian väitöskirja The role of the hippocampal theta activity in classical eyeblink conditioning in rabbits (Jyväskylän yliopisto 2009).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Theta rhythm in many brain structures characterizes wakefulness and desynchronized sleep in most subprimate mammalian brains. In close relation to behaviors, theta frequency and voltage undergo a fine modulation which may involve mobilization of dorsal raphe nucleus efferent pathways. In the present study we analyzed frequency modulation (through instantaneous frequency variation) of theta waves occurring in three cortical areas, in hippocampal CA1 and in the dorsal raphe nucleus of Wistar rats during normal wakefulness and after injection of the 5-HT1a receptor agonist 8-OH-DPAT into the dorsal raphe. We demonstrated that in attentive states the variation of theta frequency among the above structures is highly congruent, whereas after 8-OH-DPAT injection, although regular signals are present, the variation is much more complex and shows no relation to behaviors. Such functional uncoupling after blockade demonstrates the influence of dorsal raphe nucleus efferent serotoninergic fibers on the organization of alertness, as evaluated by electro-oscillographic analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The striatum, the largest component of the basal ganglia, is usually subdivided into associative, motor and limbic components. However, the electrophysiological interactions between these three subsystems during behavior remain largely unknown. We hypothesized that the striatum might be particularly active during exploratory behavior, which is presumably associated with increased attention. We investigated the modulation of local field potentials (LFPs) in the striatum during attentive wakefulness in freely moving rats. To this end, we implanted microelectrodes into different parts of the striatum of Wistar rats, as well as into the motor, associative and limbic cortices. We then used electromyograms to identify motor activity and analyzed the instantaneous frequency, power spectra and partial directed coherence during exploratory behavior. We observed fine modulation in the theta frequency range of striatal LFPs in 92.5 ± 2.5% of all epochs of exploratory behavior. Concomitantly, the theta power spectrum increased in all striatal channels (P < 0.001), and coherence analysis revealed strong connectivity (coefficients >0.7) between the primary motor cortex and the rostral part of the caudatoputamen nucleus, as well as among all striatal channels (P < 0.001). Conclusively, we observed a pattern of strong theta band activation in the entire striatum during attentive wakefulness, as well as a strong coherence between the motor cortex and the entire striatum. We suggest that this activation reflects the integration of motor, cognitive and limbic systems during attentive wakefulness.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Les mécanismes cellulaires et moléculaires qui sous-tendent la mémoire et l’apprentissage chez les mammifères sont incomplètement compris. Le rythme thêta de l’hippocampe constitue l’état « en ligne » de cette structure qui est cruciale pour la mémoire déclarative. Dans la région CA1 de l’hippocampe, les interneurones inhibiteurs LM/RAD démontrent des oscillations de potentiel membranaire (OPM) intrinsèques qui pourraient se révéler importantes pour la génération du rythme thêta. Des travaux préliminaires ont suggéré que le courant K+ I(A) pourrait être impliqué dans la génération de ces oscillations. Néanmoins, peu de choses sont connues au sujet de l’identité des sous-unités protéiques principales et auxiliaires qui soutiennent le courant I(A) ainsi que l’ampleur de la contribution fonctionnelle de ce courant K+ dans les interneurones. Ainsi, cette thèse de doctorat démontre que le courant I(A) soutient la génération des OPM dans les interneurones LM/RAD et que des protéines Kv4.3 forment des canaux qui contribuent à ce courant. De plus, elle approfondit les connaissances sur les mécanismes qui régissent les interactions entre les sous-unités principales de canaux Kv4.3 et les protéines accessoires KChIP1. Finalement, elle révèle que la protéine KChIP1 module le courant I(A)-Kv4.3 natif et la fréquence de décharge des potentiels d’action dans les interneurones. Nos travaux contribuent à l’avancement des connaissances dans le domaine de la modulation de l’excitabilité des interneurones inhibiteurs de l’hippocampe et permettent ainsi de mieux saisir les mécanismes qui soutiennent la fonction de l’hippocampe et possiblement la mémoire chez les mammifères.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Brain oscillation are not completely independent, but able to interact with each other through cross-frequency coupling (CFC) in at least four different ways: power-to-power, phase-to-phase, phase-to-frequency and phase-to-power. Recent evidence suggests that not only the rhythms per se, but also their interactions are involved in the execution of cognitive tasks, mainly those requiring selective attention, information flow and memory consolidation. It was recently proposed that fast gamma oscillations (60 150 Hz) convey spatial information from the medial entorhinal cortex to the CA1 region of the hippocampus by means of theta (4-12 Hz) phase coupling. Despite these findings, however, little is known about general characteristics of CFCs in several brain regions. In this work we recorded local field potentials using multielectrode arrays aimed at the CA1 region of the dorsal hippocampus for chronic recording. Cross-frequency coupling was evaluated by using comodulogram analysis, a CFC tool recently developted (Tort et al. 2008, Tort et al. 2010). All data analyses were performed using MATLAB (MathWorks Inc). Here we describe two functionally distinct oscillations within the fast gamma frequency range, both coupled to the theta rhythm during active exploration and REM sleep: an oscillation with peak activity at ~80 Hz, and a faster oscillation centered at ~140 Hz. The two oscillations are differentially modulated by the phase of theta depending on the CA1 layer; theta-80 Hz coupling is strongest at stratum lacunosum-moleculare, while theta-140 Hz coupling is strongest at stratum oriens-alveus. This laminar profile suggests that the ~80 Hz oscillation originates from entorhinal cortex inputs to deeper CA1 layers, while the ~140 Hz oscillation reflects CA1 activity in superficial layers. We further show that the ~140 Hz oscillation differs from sharp-wave associated ripple oscillations in several key characteristics. Our results demonstrate the existence of novel theta-associated high-frequency oscillations, and suggest a redefinition of fast gamma oscillations

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The processing of spatial and episodic information during memory tasks depends on hippocampal theta oscillations. In the present study, I investigated the relationship between theta power and choice selection during spatial decision-making. I recorded local field potentials from the CA1 region of rats retrieving reward locations in a 4-arm maze. In trained but not in naïve animals, I observed a significant increase in theta power during decision-making, which could not be explained by changes in locomotion speed. Furthermore, a Bayesian decoder based on theta power predicted choice outcomes in speed-matched trials. The decoding time course revealed that performance increased above chance before the decision moment exclusively for theta power, remaining flat for other frequency bands. These results occurred for trained animals, but no significant prediction could be made for naïve animals. Altogether, the data support a mnemonic function of theta rhythm during spatial decision-making, indicating that these oscillations correlate with the retrieval of memories required for successful decisions