979 resultados para HIGHLY DISPERSED ELECTRODES
Resumo:
The volumetric behavior of a chloride complex of palladium was studied at a glassy carbon electrode (GCE). The Pd-IV complex existing on the GCE surface was found, which was proposed to form an octahedral surface complex through coordination to the oxygen atom of an oxygen functional group on the pretreated GCE surface. The ferri/ferrocyanide redox couple was used as a probe to examine the activity of the GCE. X-ray photoelectron spectroscopy provided the evidence of the surface complex existing on the GCE. Highly dispersed Pd particles can be obtained when the surface complexes were reduced electrochemically to Pd atoms. The Pd particles obtained in this way were in nanometer scale and exhibit high catalytic activity towards the oxidation of hydrazine. (C) 1997 Elsevier Science Ltd.
Resumo:
The electrochemical preparation of highly dispersed Au microparticles on the surfaces of glassy carbon (GC) electrodes and their electrocatalytic activities for the oxidation of formaldehyde were studied. It was found that the reduction of Au3+ to Au is controlled by diffusion and the formation mechanism of Au microparticles on the GC surfaces corresponds to an instantaneous nucleation and diffusion-controlled three dimensional growth process. The particle size is about 80-90 nm in diameter after the electrochemical ageing treatment. These highly dispersed Au microparticles have high surface areas and exhibit better electrocatalytic activity than that of bulk-form Au toward the electrochemical oxidation of formaldehyde in alkaline media.
Resumo:
We demonstrate a robust strategy for obtaining a high dispersion of ultrafine Pt and PtRu nanoparticles on graphene by exploiting the nucleation of a metal precursor phase on graphite oxide surfaces. Our method opens up new possibilities to engineer graphene-based hybrids for applications in multifunctional nanoscale devices.
Resumo:
The present study reports a sonochemical-assisted synthesis of a highly active and coke resistant Ni/TiO2 catalyst for dry and steam reforming of methane. The catalyst was characterized using XRD, TEM, XPS, BET analyzer and TGA/DTA techniques. The TEM analysis showed that Ni nanoparticles were uniformly dispersed on TiO2 surface with a narrow size distribution. The catalyst prepared via this approach exhibited excellent activity and stability for both the reactions compared to the reference catalyst prepared from the conventional wet impregnation method. For dry reforming, 86% CH4 conversion and 84% CO2 conversion was obtained at 700 degrees C. Nearly 92% CH4 conversion and 77% CO selectivity was observed under a H2O/CH4 ratio of 1.2 at 700 degrees C for the steam reforming reaction. In particular, the present catalyst is extremely active and resistant to coke formation for steam reforming at low steam/carbon ratios. There is no significant modification of Ni particles size and no coke deposition, even after a long term reaction, demonstrating its potential applicability as an industrial reformate for hydrogen production. The detailed kinetic studies have been presented for steam reforming and the mechanism involving Langmuir-Hinshelwood kinetics with adsorptive dissociation of CH4 as a rate determining step has been used to correlate the experimental data.
Resumo:
Multiwalled carbon nanotube (MWCNT)/ionic liquid/gold nanoparticle hybrid materials have been prepared by a chemical route that involves functionalization of MWCNT with amine-terminated ionic liquids followed by deposition of Au. Transmission electron microscopy revealed well-distributed Au with a narrow size distribution centered around 3.3 nm. The identity of the hybrid material was confirmed through Raman and X-ray photoelectron spectroscopy.
Resumo:
Electrocatalytic mechanism for the electrochemical oxidation of formaldehyde (HCHO) on the highly dispersed Au microparticles electrodeposited on the surface of the glass carbon (GC) electrode in the alkaline Na2CO3/NaHCO3 solution and the surface characteristics of the Au microparticle-modified glass carbon (Au/GC) electrode were studied with in situ FTIR spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was found that the final products of HCHO oxidation is HCOO- at the Au/GC electrode and CO2 at the bulk Au electrode. The difference may be ascribed to the different surface characteristics between the Au/GC electrode and the bulk Au electrode. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Surface structures of Pt-Sn and Pt-Fe bimetallic catalysts have been investigated by means of Mossbauer spectroscopy, Pt-L-III -edge EXAFS and H-2-adsorption. The results showed that the second component, such as Sn or Fe, remained in the oxidative state and dispersed on the gamma-Al2O3 surface after reduction, while Pt was completely reduced to the metallic state and dispersed on either the metal oxide surface or the gamma-Al2O3 surface. By correlating the distribution of Pt species on different surfaces with the reaction and adsorption performances, it is proposed that two kinds of active Pt species existed on the surfaces of both catalysts, named M-1 sites and M-2 sites. M-1 sites are the sites in which Pr directly anchored on the gamma-Al2O3 surface, while M-2 sites are those in which Pt anchored on the metal oxide surface. M-1 sites are favorable for low temperature H-2 adsorption, and responsible for the hydrogenolysis reaction and carbon deposition, while M-2 sites which adsorb more H-2 at higher temperature, are more resistant to the deactivation due to less carbon deposition, and provide major contribution to the dehydrogenation reaction.
Resumo:
Production of fatty alcohols through selective hydrogenation of fatty acids was studied over a 4% ReOx/TiO2 catalyst. Stearic acid was hydrogenated to octadecanol at temperatures and pressures between 180-200 degrees C and 2-4 MPa, with selectivity reaching 93%. A high yield of octadecanol was attributed to a strong adsorption of the acid compared to alcohol on the catalyst, which inhibits further alcohol transformation to alkanes. Low amounts (<7%) of alkanes (mainly octadecane) were formed during the conversion of stearic acid. However, it was found that the catalyst could be tuned for the production of alkanes. The reaction intermediates were octadecanal and stearyl stearate. Based on the reaction products analysis and catalyst characterization, a reaction mechanism and possible pathways were proposed.
Resumo:
Catalysts consisting in platinum supported on cerium oxide highly dispersed on activated carbon, with a Pt loading of 1 wt.% and ceria loadings of 5, 10 and 20 wt.% have been prepared by impregnation method and characterized by several techniques (N2 adsorption at 77 K, ICP, XRD, H2-TPR and XPS). Their catalytic behavior has been evaluated in the total oxidation of ethanol and toluene after reduction at 473 K. The obtained results show that the prepared catalysts have better performances than platinum supported on bulk CeO2. The best catalytic performance was obtained for 10 wt.% ceria loading, likely due to an optimum synergistic interaction between highly dispersed cerium oxide and platinum particles. Pt-10Ce/C achieves total conversion of ethanol and toluene to CO2 at 433 K and 453 K, respectively, and shows no deactivation during a test for 100 h. Under humid conditions (relative humidity, RH, of 40 and 80%), the activity was only slightly influenced due to the hydrophobic character of the activated carbon support, which prevents the adsorption of water.
Resumo:
Structure–activity relationships for 1 wt.% Pt catalysts were investigated for a series of TixCe(1−x)O2 (x = 1, 0.98, 0.9, 0.5, 0.2 and 0) supports prepared by the sol–gel method. The catalysts prepared by impregnation were characterized in detail by applying a wide range of techniques as N2-isotherms, XRF, XRD, Raman, XPS, H2-TPR, Drifts, UV–vis, etc. and tested in the preferential oxidation of CO in the presence of H2. Also several reaction conditions were deeply analyzed. A strong correlation between catalyst performance and the electronic properties let us to propose, based in all the experimental results, a plausible reaction mechanism where several redox cycles are involved.
Resumo:
The electrocatalytic oxidation of methanol on polypyrrole (PPy) film modified with platinum microparticles has been studied by means of electrochemical and in situ Fourier transform infrared techniques. The Pt microparticles, which were incorporated in the PPy film by the technique of cyclic voltammetry, were uniformly dispersed. The modified electrode exhibits significant electrocatalytic activity for the oxidation of methanol. The catalytic activities were found to be dependent on Pt loading and the thickness of the PPy film. The linearly adsorbed CO species is the only intermediate of electrochemical oxidation of methanol and can be readily oxidized at the modified electrodes. The enhanced electrocatalytic activities may be due to the uniform dispersion of Pt microparticles in the PPy film and the synergistic effects of the highly dispersed Pt microparticles and the PPy film. Finally, a reaction mechanism is suggested.
Resumo:
Chemically modified electrodes (CMEs) prepared by the dispersion of metal oxide particles on a glassy carbon (GC) substrate greatly enhance the voltammetric response and amperometric detection of local anesthetics following liquid chromatography (LC). The enhancement is more pronounced with the GC electrodes dispersed by the metal oxides of higher oxidation states (+3, +4) and for the species exhibiting relatively slow electrode kinetics under given conditions. With an applied potential of 1.2 V (vs. SCE), LC amperometric detection of the analytes at the alpha-alumina modified GC surface gives detection limits 2-5 times lower than those obtained at the bare electrode. The metal oxide-dispersed electrodes display significant improvement in sensitivity, and selectivity and indicate excellent preparation reproducibility and performance stability.