32 resultados para HEXAHYDRATE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure of the 2:1 proton-transfer compound of brucine with biphenyl-4,4’-disulfonate, bis(2,3-dimethoxy-10-oxostrychnidinium) biphenyl-4,4'-disulfonate hexahydrate (1) has been determined at 173 K. Crystals are monoclinic, space group P21 with Z = 2 in a cell with a = 8.0314(2), b = 29.3062(9), c = 12.2625(3) Å, β = 101.331(2)o. The crystallographic asymmetric unit comprises two brucinium cations, a biphenyl-4,4'-disulfonate dianion and six water molecules of solvation. The brucinium cations form a variant of the common undulating and overlapping head-to-tail sheet sub-structure. The sulfonate dianions are also linked head-to-tail by hydrogen bonds into parallel zig-zag chains through clusters of six water molecules of which five are inter-associated, featuring conjoint cyclic eight-membered hydrogen-bonded rings [graph sets R33(8) and R34(8)], comprising four of the water molecules and closed by sulfonate O-acceptors. These chain structures occupy the cavities between the brucinium cation sheets and are linked to them peripherally through both brucine N+-H...Osulfonate and Ocarbonyl…H-Owater to sulfonate O bridging hydrogen bonds, forming an overall three-dimensional framework structure. This structure determination confirms the importance of water in the stabilization of certain brucine compounds which have inherent crystal instability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of temperature dependence of EPR spectra of Mn2+ and Cu2+ ions doped calcium cadmium acetate hexahydrate (CaCd(CH3COO)4•6H2O) have been reported. The investigation has been carried out in the temperature range between room temperature ( 300 K) and liquid nitrogen temperature. A I-order phase transition at 146 ± 0.5 K has been confirmed. In addition a new II-order phase transition at 128 ± 1 K has been detected for the first time. There is evidence of large amplitude hindered rotations of CH3 groups which become frozen at 128 K. The incorporation of Cu2+ and Mn2+ probes at Ca2+ and Cd2+ sites respectively provide evidence that the phase transitions are caused by the molecular rearrangements of the common coordinating acetate groups between Ca2+ and Cd2+ sites. In contradiction to the previous reports of a change of symmetry from tetragonal to orthorhombic below 140 K, the symmetry of the host is concluded to remain tetragonal in all the three observed phases between room temperature and liquid nitrogen temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Raman spectrum of guanidinium aluminium sulphate hexahydrate also known as ‘GASH’ which is a ferro-electric crystal and has strong hydrogen bonds has been recorded. 38 Raman lines have been identified in the spectra of GASH. The O-H stretching mode is found to be very much influenced by the hydrogen bond and they appear over a widely extended region from 2240–3600 cm.−1 It can therefore be concluded that all the O-H bonds are hydrogen bonded and some of them are quite strong. The Raman lines due to the N-H vibrations appear with the normal frequency shifts indicating thereby that N-H bonds are not hydrogen bonded. These conclusions are fully supported by the results obtained from the X-ray crystal structure analysis of GASH. The principal vibrations of the Al-(OH2)6 groups have also been identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The title mixed-metal complex, {(NH4)(2)[Cu(C7H3NO4)(2)(H2O)(2)][CdCu(C7H3NO4)(2)(H2O)(6)]center dot 6H(2)O}(n), contains one octahedrally coordinated Cd-II center and two octahedrally coordinated Cu-II centers, each lying on an inversion center. The two Cu-II atoms are each coordinated by two O atoms and two N atoms from two 2,4-pydc (2,4-H(2)pydc = pyridine-2,4-dicarboxylic acid) ligands in the equatorial plane and two water molecules at the axial sites, thus producing two crystallographically independent [Cu(2,4-pydc)(2)(H2O)(2)](2-) metalloligands. One metalloligand exists as a discrete anion and the other connects the Cd(H2O)(4) units, forming a neutral chain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Zn(C12H8N2)2(H2O)2]SO4.6H2O, M(r) = 665.98, triclinic, P1BAR, a = 10.070 (4), b = 12.280 (3), c = 13.358 (2) angstrom, alpha = 109.12 (2), beta = 92.58 (2), gamma = 110.85 (2)-degrees, V = 1433.9 (7) angstrom 3, Z = 2, D(x) = 1.54 g cm-3, lambda(Mo K-alpha) = 0.71069 angstrom, mu = 10.1 cm-1, F(000) = 692, T = 293 K, R = 0.044 for 3985 observed reflections. The Zn atom is coordinated in a distorted octahedral geometry by four N atoms from two 1,10-phenanthroline (phen) ligands and two water molecules. The intermolecular ring-stacking interactions between the phen ligands occur in two forms: infinite chains and discrete dimers. Hydrogen bonds further stabilize the structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The double sulfate family (ABSO4), where A and B are alkali metal cations, is the object of great interest owing to the complexity and richness of its sequence of phase transition induced by temperature variation. A new sulfate salt characterized by the presence of water molecule in the unit cell with the chemical formula, Li2Na3(SO4)2⋅6H2O (LSSW), was obtained. The ultrasonic velocity measurement was done with pulse echo overlap technique [PEO]. All the six second order elastic stiffness constants, C11 = C22, C33, C44 = C55, C12, C14 and C13 = C23 are reported for the first time. The anisotropy in the elastic properties of the crystal are well explained by the pictorial representation of the polar plots of phase velocity, slowness, Young’s modulus and linear compressibility in a–b and a–c planes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystal structures of the proton-transfer compounds of 5-sulfosalicylic acid (3-carboxy-4-hydroxybenzenesulfonic acid) with the aliphatic nitrogen Lewis bases, hydroxylamine, triethylamine, pyrrolidine, morpholine, N-methylmorpholine and piperazine, viz. hydroxyammonium 3-carboxy-4-hydroxybenzenesulfonate (1), triethylaminium 3-carboxy-4-hydroxybenzenesulfonate (2), pyrrolidinium 3-carboxy-4-hydroxybenzenesulfonate monohydrate (3), morpholinium 3-carboxy-4-hydroxybenzenesulfonate monohydrate (4), N-methylmorpholinium 3-carboxy-4-hydroxybenzenesulfonate monohydrate (5) and piperazine-1,4-diium bis(3-carboxy-4-hydroxybenzenesulfonate) hexahydrate (6) have been determined and their comparative structural features and hydrogen-bonding patterns described. Crystals of 4 are triclinic, space group P-1 while the remainder are monoclinic with space group either P21/c (1 - 3) or P21/n (5, 6). Unit cell dimensions and contents are: for 1, a = 5.0156(3), b = 10.5738(6), c = 18.4785(9) Å, β = 96.412(5)o, Z = 4; for 2, a = 8.4998(4), b = 12.3832(6), c = 15.4875(9) Å, β = 102.411(5)o, Z = 4; for 3, a = 6.8755(2), b = 15.5217(4), c = 12.8335(3) Å, β = 92.074(2)o, Z = 4; for 4, a = 6.8397(2), b = 12.9756(5), c = 15.8216(6) Å, α = 90.833(3), β = 95.949(3), γ = 92.505(3)o, Z = 4; for 5, a = 7.0529(3), b = 13.8487(7), c = 15.6448(6) Å, β = 90.190(6)o, Z = 4; for 6, a = 7.0561(2), b = 15.9311(4), c = 12.2102(3) Å, β = 100.858(3)o, Z = 2. The hydrogen bonding generates structures which are either two-dimensional (2 and 5) or three-dimensional (1, 3, 4 and 6). Compound 6 represents the third reported structure of a salt of 5-sulfosalicylic acid having a dicationic piperazine species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bauxite refinery residues (red mud) are derived from the Bayer process by the digestion of crushed bauxite in concentrated sodium hydroxide at elevated temperatures and pressures. This slurry residue, if untreated, is unsuitable for discharge directly into the environment and is usually stored in tailing dams. The liquid portion has the potential for discharge, but requires pre-treatment before this can occur. The seawater neutralisation treatment facilitates a significant reduction in pH and dissolved metal concentrations, through the precipitation of hydrotalcite-like compounds and some other Mg, Ca, and Al hydroxide and carbonate minerals. The hydrotalcite-like compounds, precipitated during seawater neutralisation, also remove a range of transition metals, oxy-anions and other anionic species through a combination of intercalation and adsorption reactions: smaller anions are intercalated into the hydrotalcite matrix, while larger molecules are adsorbed on the particle surfaces. A phenomenon known as ‘reversion’ can occur if the seawater neutralisation process is not properly controlled. Reversion causes an increase in the pH and dissolved impurity levels of the neutralised effluent, rendering it unsuitable for discharge. It is believed that slow dissolution of components of the red mud residue and compounds formed during the neutralisation process are responsible for reversion. This investigation looked at characterising natural hydrotalcite (Mg6Al2(OH)16(CO3)∙4H2O) and ‘Bayer’ hydrotalcite (synthesised using the seawater neutralisation process) using a variety of techniques including X-ray diffraction, infrared and Raman spectroscopy, and thermogravimetric analysis. This investigation showed that Bayer hydrotalcite is comprised of a mixture of 3:1 and 4:1 hydrotalcite structures and exhibited similar chemical characteristic to the 4:1 synthetic hydrotalcite. Hydrotalcite formed from the seawater neutralisation of Bauxite refinery residues has been found not to cause reversion. Other components in red mud were investigated to determine the cause of reversion and this investigation found three components that contributed to reversion: 1) tricalcium aluminate, 2) hydrocalumite and 3) calcium hydroxide. Increasing the amount of magnesium in the neutralisation process has been found to be successful in reducing reversion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hexahydrate of a 1:1 complex between L-histidyl-L-serine and glycyl-L-glutamic acid crystallizes in space group P1 with a = 4.706(1), b= 8.578(2), c= 16.521(3) ÅA; α= 85.9(1), β= 89.7(1)°, = 77.4(1). The crystal structure, solved by direct methods, has been refined to an R value of 0.046 for 2150 observed reflections. The two peptide molecules in the structure have somewhat extended conformations. The unlike molecules aggregate into separate alternating layers. Each layer is stabilized by hydrogen bonded head-to-tail sequences as well as sequences of hydrogen bonds involving peptide groups. The arrangement of molecules in each layer is similar to one of the plausible idealized arrangements of L-alanyl-L-alanine worked out from simple geometrical considerations. Adjacent layers in the structure are held together by interactions involving side chains as well as water molecules. The water structure observed in the complex provides a good model, at atomic resolution, for that in protein crystals. An interesting feature of the crystal structure is the existence of two water channels in the interfaces between adjacent peptide layers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lead zir conyl oxalate hexahydrate (LZO) and lead titanyl zirconyl oxalate hydrate (LTZO) are prepared and characterized. Their thermal decompositions have been investigated by thermoanalytical and gas analysis techniques. The decomposition in air or oxygen has three steps — dehydration, decomposition of the oxalate to a carbonate and the decomposition of carbonate to PbZrO3. In non oxidising atmosphere, partial reduction of Pb(II) to Pb(0) takes place at the oxalate decomposition step. The formation of free metallic lead affects the stoichiometry of the intermediate carbonate and yields a mixture of Pb(Ti,Zr)O3 and ZrO2 as the final products. By maintaining oxidising atmosphere and low heating rate, direct preparation of stoichiometric, crystalline Pb(Ti,Zr)O3 at 550°C is possible from the corresponding oxalate precursor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NMR study of ferrous fluosilicate hexahydrate indicated the presence of motion of both proton and fluorine nuclei. Only a single narrow line was observed for protons for any arbitrary orientation of a single crystal with respect to the applied magnetic field. This can be interpreted in terms of a phase-correlated flip motion of the interproton vectors between two disordered orientations or in terms of a hindered rotation of the Fe(H2O) 6 octahedron about the fourfold axes, together with the flip motion. The fluorine second moment indicated that the SiF6 octahedron also is undergoing reorientation. The temperature variation of the powder linewidth showed a transition around 195°K and led to rather low values for the potential barriers hindering the motions. No significant temperature variation of the linewidth was observed for hexahydrated cobalt fluosilicate in the temperature range between 90°K and room temperature. Similar observations in a powder sample of tetrahydrated copper fluosilicate also showed the presence of internal motions. The linewidth transition in this case took place at about 220°K and was found to be rather abrupt. The potential barrier for the motion was found to be relatively high.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A chemoselective reduction of olefins and acetylenes is demonstrated by employing catalytic amounts of ferric chloride hexahydrate (FeCl3 center dot 6H(2)O) and aqueous hydrazine (NH2NH2 center dot H2O) as hydrogen source at room temperature. The reduction is chemoselective and tolerates a variety of reducible functional groups. Unlike other metal-catalysed reduction methods, the present method employs a minimum amount of aqueous hydrazine (1.5-2 equiv.). Also, the scope of this method is demonstrated in the synthesis of ibuprofen in aqueous medium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mild and convenient oxidative transformation of secondary alcohols to 1,5-disubstituted tetrazoles is uncovered by employing trimethylsilyl azide (TMSN3) as a nitrogen source in the presence of a catalytic amount of copper(II) perchlorate hexahydrate Cu(ClO4)(2)(.)6H(2)O] (5mol%) and 2,3-dichloro-5,6-dicyano-para-benzoquinone (DDQ) (1.2equiv.) as an oxidant. This reaction is performed under ambient conditions and proceeds through CC bond cleavage.