40 resultados para HETEROPOLYANIONS
Resumo:
The in situ electrochemical quartz crystal microbalance(EQCM) technique was used to investigate the ion transport of immobilized heteropolyanions at a self-assembled monolayer(SAM) modified gold electrode during electrochemical redox process. A mixed transfer method was presented to analyse the abnormal change of resonant frequency based on the simultaneous insertion/extraction of different ions. The results indicate that the migration of HSO4- anions was indispensable in the redox process of the heteropolyan ions in a I mol/L H2SO4 solution and played a key role in the abnormal change of the resonant frequency. Such a change was attributed to different packing densities derived by means of differently immobilized methods.
Resumo:
Heteropolyanions of tungstophosphoric acid (PWA) have been successfully hybridized with carbon nanotubes (CNTs) by a severe mechanical milling. The obtained hybrid is electroactive for hydrogen evolution (HE) at potentials as positive as -0.16 V vs. Ag/AgCl in 0.2 M HClO4 aqueous solution and its electrocatalysis is up to the level of Pt/CNTs (20 wt% Pt) for HE, indicating a vigorous alternative to Pt group metals. The HE mechanism of the hybrid was also studied and it was found that the tungsten oxycarbides are the electroactive components for HE.
Resumo:
Ultrathin multilayer films have been prepared by means of alternate adsorption of iron(Ill)-substituted heteropolytungstate anions and a cationic redox polymer on the 4-aminobenzoic acid modified glassy carbon electrode surface based on electrostatic layer-by-layer assembly. Cyclic voltammetry, electrochemical impedance spectroscopy and UV-Vis absorption spectrometry have been used to easily monitor the uniformity of thus-formed multilayer films. Especially, the electrochemical impedance spectroscopy is successfully used to monitor the multilayer deposition processes and is a very useful technique in the characterization of multilayer films because it provides valuable information about the interfacial impedance features. All these results reveal regular film growth with each layer adsorption. The resulting multilayer films can effectively catalyze the reduction of H2O2,NO2- and BrO3-.
Resumo:
We describe the controlled fabrication of ultrathin multilayer films consisting of tri-vanadium- substituted heteropolytungstate anions (denoted as P2W15V3) and a cationic polymer of quaternized poly (4-vinylpyridine) partially complexed with osmium bis(2,2'-bipyridine) (denoted as QPVP-Os) on the 4-aminobenzoic acid (4-ABA) modified glassy carbon electrode (GCE) surface based on layer-by-layer assembly. Cyclic voltammetry and UV-vis absorption spectrometry have been used to easily monitor the thickness and uniformity of thus-formed multilayer films. The V-centered redox reaction of P2W15V3 in the multilayer films can effectively catalyze the reduction of BrO3- and NO2-. The resulting P2W15V3/QPVP-Os multilayer film modified electrode behaves as a much promising electrochemical sensor because of the low overpotential for the catalytic reduction of BrO3- and NO2-, and the catalytic oxidation of ascorbic acid.
Resumo:
A composite film containing heteropolyanion was fabricated on gold by attaching the Keggin-type heteropolyanion, PMo12O403- on a 4-aminothiophenol SAM via Au-S bonding. Reflection FTIR, cyclic voltammetry and XPS were used for the characterization of the composite film. Reflection FTIR studies indicate that there is some Coulombic interaction between PMo12O403- and the surface amino group in the composite film, which greatly improves the film stability and prevents effectively the destructive intermolecular aggregation. The composite him shows three reversible redox couples within the pH range pH less than or equal to 7.0, attributed to three two-electron and two-proton electrochemical reduction-oxidation processes of PMo12O403-. Compared with PMo12O403- in the solution, the PMo12O403- of the composite film electrode can exist in a larger pH range, and shows smaller peak-to-peak separation, and more reversible reaction kinetics. Moreover, the composite him obtained shows a good catalytic activity for the reduction of BrO3-. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
Polypyrrole film electrode with Co(W2O7)(6)(10-) and CuW12O406- ions were synthesised in aqueous solutions, The electrode possesses a good stability and cyclic voltammetric behavior in weakly acidic or near neutral solutions, The redox of CuW12O406- ion can be catalysed by the polypyrrole film, The ESR measurement of the polypyrrole film with Co(W2O7)(6)(10-) and CuW12O406- ions indicates that the heteropolyanions not only play the role of neutralizing electricity in the polypyrrole film, contrasted with the film containing NO3-, but also Interact with the polypyrrole molecular chain to form some additive compound, The additive compound affects the electric structure elf the polypyrrole film and is unstable at more positive or more negative potentials.
Resumo:
The ESR of PPy films doped with Co (W2O7)(6)(10-) and CuW12O406- ions were reported and discussed. Results show that heteropolyanions not only play the role of neutralizing electricity in the PPy film, but also interact with the PPy molecular chain to form some adducts. The adducts affect the electronic structure of the PPy film and are unstable at more positive or more negative potentials. Dysonian ESR lineshape was recorded for the dry PPy film with CuW12O406- for the first time.
Resumo:
The heteropolyanions of the Keggin structure ZW(11)O(39)M(H2O)(n-)(Z = Si, Ge, P; M = Ni2+, Cu2+, Cr3+, Co2+, n = 4 similar to 6) and Dawson structure P(2)W(17)O(61)M(H2O)(n-)(M = Ni2+, Cu2+, Cr3+, Co2+, n = 7, 8) have been transferred into the non-polar
Resumo:
A phosphopolyoxomolybdate (P2Mo18) doped polypyrrole (PPy) modified electrode was prepared in aqueous solution by a one-step method. During the polymerization of PPy, P2Mo18 acted as both catalyst and dopant. The electrochemical behavior of the PPy/P2Mo18 modified electrode before and after the overoxidation of PPy was investigated. Both of these showed a catalytic effect toward bromate. The PPy/P2Mo18 composite film was characterized by chronoamperometry, cyclic voltammetry, the rotating disk electrode technique, X-ray photoelectron spectroscopy and Raman spectroscopy.
Resumo:
Three kinds of hybrid organic/inorganic Langmuir-Blodgett films are obtained by the compact organization of poly (1, 2-dihydro-2,2,4-trimethyl)quinoline (abridged as PQ), octadecylamine(abridged as OA) and rare earth-substituted heteropolyanions [abridged as RE(PW11,)(2), RE=Ce-II, Eu-II, Gd-II] using the Langmuir-Blodgett technique. They are characterized by the pi-A isotherms, the absorption spectra, the fluorescence spectra and the atomic force microscope. The scanning tunneling microscopy shows that the conductivity of the hybrid LB films is much better after heteropolyanions having been incorporated in the films.
Resumo:
The conductive alpha (2)-K7P2W17VO62/graphite/organoceramic composite was prepared by dispersing alpha (2)-K7P2W17VO62 and graphite powder in a propyltrimethoxysilane-based sol-gel solution; it was used as the electrode material for an amperometric hydrogen peroxide sensor. The modified electrode had a homogeneous mirror-like surface and showed well defined cyclic voltammograms. Square-wave voltammetry was employed to study the pH-dependent electrochemical behavior of c alpha (2)-K7P2W17VO62 doped in the graphite organoceramic matrix, and the experiment showed that both protons and sodium cations participated in the odor process. A hydrodynamic voltammetric experiment was performed to characterize the electrode as an amperometric sensor for the determination of hydrogen peroxide. The sensor can be renewed easily in a repeatable manner by a mechanical polishing step and has a long operational lifetime. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A new class of polyoxomelalate (POM)-modified electrodes is fabricated by the sol-gel technique and demonstrated for nitrite sensing. The electrode material comprises an interconnected dispersion of graphite powder and a uniform dispersion of isopolymolybdic anions (Mo8O26) in a porous methylsilicate matrix. The chemically modified electrodes showed well-defined cyclic voltammograms with three reversible redox couples in acidic aqueous solutions because of the good physicochemical compatibility of Mo8O26 and the carbon ceramic matrix. The Mo8O26-modified electrodes show good stability and reproducibility, especially the renewal repeatability by simple polishing in the event of surface fouling. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
A conductive carbon ceramic composite electrode (CCE) comprised of cc-type 1:12 phosphomolybdic acid (PMo12) and carbon powder in an organically modified silicate matrix was fabricated using a sol-gel method and characterized by scanning electron microscopy, cyclic voltammetry, and Osteryoung square-wave voltammetry. Osteryoung square-wave voltammograms of the modified electrode immersed in different acidic aqueous solutions present the dependence of current and redox potential on pH. The PMo12-doped CCE shows more reversible reaction kinetics, good stability and reproducibility, especially the renewal repeatability by simple polishing in the event of surface fouling or dopant leaching. Moreover, the modified electrode shows good catalytic activity for the electrochemical reduction of bromate.
Resumo:
Multilayer films composed of heteropolyanions (HPAS, SiMo11 VO405-) and cationic polymer poly(diallyldimethylammonium chloride) on 4-aminothiophenol self-assembled-monolayer were fabricated by electrochemical growth. Growth processes of the composite films were characterized by cyclic voltammetry. The results prove the third redox peak of Mo increases more rapidly, otherwise the other Mo redox peaks increase very slowly when the number of layers of heteropolyanions is greater. The peak potentials of composite films shift linearly to negative position with higher pH, which implies that protons are involved in the redox processes of HPA. The investigation of electrocatalytic behaviors of composite films shows a good catalytic activity for the reductions of HNO2 and BrO3-. Catalytic currents increase with increasing number of layers of heteropolyanions, moreover, the catalytic currents have a good linear relationship with the concentrations of BrO3-.
Resumo:
A new type of inorganic-organic hybrid material incorporating carbon powder and alpha -type 2:18-molybdodiphosphate (P2Mo18) in a methyltrimethoxysilane (MTMOS) based gel has been produced by a sol-gel process and used to fabricate a chemically modified electrode. The P2Mo18-doped carbon ceramic composite electrode was characterized using SEM and cyclic voltammetry. Square-wave voltammetry with an excellent sensitivity was exploited to conveniently investigate the dependence of current and half-wave potential (E-1/2) on pH. The chemically modified electrode has some advantages over the modified film electrodes constructed by the conventional methods, such as long-term stability, reproducibility, and especially repeatability of surface-renewal by simple polishing in the event of surface fouling or dopant leaching. In addition, the modified electrode shows a good catalytic activity for the electrochemical reduction of bromate in an acidic aqueous solution. (C) 2000 Elsevier Science B.V. All rights reserved.