987 resultados para HETEROGENEOUS ASYMMETRIC CATALYSIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lewis acid complexes based on copper(II) and an imidazolium-tagged bis(oxazoline) have been used to catalyse the asymmetric Mukaiyama aldol reaction between methyl pyruvate and 1-methoxy-1-tri-methylsilyloxypropene under homogeneous and heterogeneous conditions. Although the ees obtained in ionic liquid were similar to those found in dichloromethane, there was a significant rate enhancement in the ionic liquid with reactions typically reaching completion within 2 min compared with only 55% conversion after 60 min in dichloromethane. However, this rate enhancement was offset by lower chemoselectivity in ionic liquids due to the formation of 3-hydroxy-1,3-diphenylbutan-1-one as a by-product. Supporting the catalyst on silica or an imidazolium-modified silica using the ionic liquid or in an ionic liquid-diethyl ether system completely suppressed the formation of this by-product without reducing the enantioselectivity. Although the heterogeneous systems were characterised by a drop in catalytic activity the system could be recycled up to five times without any loss in conversion or ee.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The enantioselective hydrogenation of ethyl pyruvate on the cinchonidine modified Pt/Al2O3 catalyst was investigated using a high-pressure reaction system with a fixed-bed reactor for the purpose to produce the,chiral product without separating the catalyst from the reaction system. The reaction was also investigated in a batch reactor for comparison. About 60% e. e. and 90% e. e. were obtained with the fixed-bed reactor and the batch reactor respectively, demonstrating the possibility for the heterogeneous asymmetric hydrogenation in the fixed-bed reactor. Some adsorbed chiral modifier, cinchonidine, can be slowly removed from the surface of Pt/Al2O3 under the continuous flow reaction, as a result, the e, e, values drops with the reaction time in the fixed-bed reactor. The enantio-selectivity is higher in the fixed-bed reactor, but lower in the batch reactor when ethanol was used as solvent than that when acetic acid as solvent. CO was used as molecular probe to characterize the adsorption of cinchonidine an the catalyst surface by IR spectroscopy, A red shift observed in IR spectra of coadsorbed CO with cinchonidine suggests that the cinchonidine adsorption is mainly through the pi -interaction with platinum surface and donating electron to the platinum surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the design and synthesis of a true, heterogeneous, asymmetric catalyst. The catalyst consists of a thin film that resides on a high-surface- area hydrophilic solid and is composed of a chiral, hydrophilic organometallic complex dissolved in ethylene glycol. Reactions of prochiral organic reactants take place predominantly at the ethylene glycol-bulk organic interface.

The synthesis of this new heterogeneous catalyst is accomplished in a series of designed steps. A novel, water-soluble, tetrasulfonated 2,2'-bis (diphenylphosphino)-1,1'-binaphthyl (BINAP-4S0_3Na) is synthesized by direct sulfonation of 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP). The rhodium (I) complex of BINAP-4SO_3Na is prepared and is shown to be the first homogeneous catalyst to perform asymmetric reductions of prochiral 2-acetamidoacrylic acids in neat water with enantioselectivities as high as those obtained in non-aqueous solvents. The ruthenium (II) complex, [Ru(BINAP-4SO_3Na)(benzene)Cl]Cl is also synthesized and exhibits a broader substrate specificity as well as higher enantioselectivities for the homogeneous asymmetric reduction of prochiral 2-acylamino acid precursors in water. Aquation of the ruthenium-chloro bond in water is found to be detrimental to the enantioselectivity with some substrates. Replacement of water by ethylene glycol results in the same high e.e's as those found in neat methanol. The ruthenium complex is impregnated onto a controlled pore-size glass CPG-240 by the incipient wetness technique. Anhydrous ethylene glycol is used as the immobilizing agent in this heterogeneous catalyst, and a non-polar 1:1 mixture of chloroform and cyclohexane is employed as the organic phase.

Asymmetric reduction of 2-(6'-methoxy-2'-naphthyl)acrylic acid to the non-steroidal anti-inflammatory agent, naproxen, is accomplished with this heterogeneous catalyst at a third of the rate observed in homogeneous solution with an e.e. of 96% at a reaction temperature of 3°C and 1,400 psig of hydrogen. No leaching of the ruthenium complex into the bulk organic phase is found at a detection limit of 32 ppb. Recycling of the catalyst is possible without any loss in enantioselectivity. Long-term stability of this new heterogeneous catalyst is proven by a self-assembly test. That is, under the reaction conditions, the individual components of the present catalytic system self-assemble into the supported-catalyst configuration.

The strategies outlined here for the design and synthesis of this new heterogeneous catalyst are general, and can hopefully be applied to the development of other heterogeneous, asymmetric catalysts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxidation of water to oxygen by bromate ions is mediated by the heterogeneous redox catalyst ruthenium-Adams, a high surface area and very stable form of ruthenium(IV) oxide. The initial kinetics of catalysis are investigated as a function of [BrO3-], [Ru-Adams], temperature and [anion], where ''anion'' = ClO4- Cl- or Br-. An electrochemical model of heterogeneous redox catalysis, in which the two participating redox couples are both electrochemically irreversible, is used to interpret most of the kinetic data. The observed inhibition of the initial rate of the redox reaction by Cl- and, especially, Br- ions is tentatively attributed to competitive adsorption. In the presence of organic species, such as methanol, ethanol and propan-1-ol, which are more easily oxidised than water by bromate ions, the rate of BrO3- ion reduction is significantly faster, i.e. ca 24-34 times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetics of the oxidation of Ru(bpy)32+ to Ru(bpy)33+ by T13+ ions, catalyzed by a dispersion of RuO2-xH2O in 3 mol dm-3 HNO3, are reported as a function of [Ru(bpy)32+], [Tl3+], [Tl+], [RuO2.xH2O], and temperature. The kinetics of Ru(bpy)32+ oxidation fit an electrochemical model of redox catalysis involving electron transfer between the two electrochemically reversible redox couples, i.e. Ru(bpy)33+/Ru(bpy)32+ and Tl3+/Tl+, mediated by the dispersion of microelectrode particles of RuO2.xH2O. In this model, the rate of reaction is assumed to be controlled by the diffusion of Ru(bpy)32+ toward, and Ru(bpy)33+ away from, the catalyst particles. The Arrhenius activation energy for the catalyzed reaction is 25.9 +/- 0.7 kJ mol-1, and the changes in enthalpy and entropy for the reaction are 36 +/- 2 kJ mol-1 and 127 +/- 6 J mol-1 K-1, respectively. This work describes a rare example of reversible heterogeneous redox catalysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work to be presented herein illustrates several important facts. First, the synthesis of BIBOL (19), a 1,4-diol derived from the monoterpene camphor has allowed us to demonstrate that oxidative dimerizations of enolates can, and do proceed with nearly complete diastereoselectivity under kinetically controlled conditions. The yield of BIBOL is now 50% on average, with a 10% yield of a second diastereomer, which is likely the result of a non-kinetic hydride reduction, thereby affording the epimeric alcohol, 20, coupled on the exo face of camphor. This implies the production of 60% of a single coupling diastereomer. No other diastereomers from the reduction were observed. The utility of BEBOL has been illustrated in early asymmetric additions of diethylzinc to aryl aldehydes, with e.e.'s as high as 25-30%. '^' To further the oxidative coupling work, the same methodology which gave rise to BIBOL was applied to the chiral pool ketone, menthone. Interestingly, this gave an excellent yield of the a-halohydrin (31), which is the result of a chlorination of menthone. This result clearly indicates the high stereoselectivity of the process regardless of the outcome, and has illustrated an interesting dichotomy between camphor and menthone. The utility of the chlorination product as a precursor other chiral ligands is currently being investigated. > ' Finally, a new series of 1,3-diols as well as a new aminoalcohol have successfully been synthesized from highly diastereoselective aldol/mannich reactions. Early studies have indicated their potential in asymmetric catalysis, while employing pi-stack interactions as a means of controlling enantioselective aldol reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new series of chiral ferrosalen ligands was designed and synthesized. The special feature of the ferrosalen ligands is that the chirality originated from the planar chiral ferrocenyl structure. For most known salen ligands, chirality comes from central and axial chiral centers. The key building block for the construction of these ferrosalen ligands was synthesized stereoselectively by a chiral auxiliary approach. This approach does not consume any chiral material, and does not require chiral HPLC resolution. Using this method, nine ligands were prepared using ferrocene as the starting material. In addition, the steric hindrance was modulated by changing the cyclopentadienyl group to the more bulky pentamethylcyclopentadienyl- and pentaphenylcyclopentadienyl- groups. The structure of these ligands was established by 1H and 13C NMR. The structure of a ferrosalen-Cu (II) complex was determined by single crystal X-ray diffraction analysis. All the chiral ferrosalen ligands were tested in catalytic asymmetric reactions including enantioselective carbonyl-ene reaction, enantioselective Strecker-type reaction and enantioselective silylcyanation. For the carbonyl-ene reaction, up to 99% yield and 29% enantiomeric excess (ee) were obtained using ligand-Co (III) as the catalysts; For the Strecker-type reaction, a maximum of 20% ee was obtained using ligand-AlCl as the catalyst; For the silylcyanation reaction, up to 99% yield and 26% ee were obtained using ligand-AlCl as the catalyst.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reviews the recent progress made in the asymmetric synthesis on chiral catalysts in porous materials and discusses the effects of surface and pores on enantio-selectivity (confinement effect). This paper also summarizes various approaches of immobilization of the chiral catalysts onto surfaces and into pores of solid inorganic supports such as microporous and mesoporous materials. The most important reactions surveyed for the chiral synthesis in porous materials include epoxidation. hydrogenation, hydroformylation, Aldol and Diels-Alder reactions, etc. The confinement effect originated from the surfaces and the pores turns out to be a general phenomenon. which may make the enantioselectivity increase (positive effect) or decrease (negative effect). The confinement effect becomes more pronounced particularly when the bonding between the catalyst and the surface is more rigid and the pore size is tuned to a suitable range. It is proposed that the confinement in chiral synthesis is essentially a consequence of subtle change in transition states induced by weak-interaction in pores or on surfaces. It is also anticipated that the enantioselectivity could be improved by tuning the confinement effect based on the molecular designing of the pore/surface and the immobilized catalysts according to the requirements of chiral reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several Chiral BINOL functionalized mesoporous silicas were prepared by post grafting of organosilane derivatives of (S)-BINOL (1,1'-bi-2-naphthol) on SBA-15 and characterized by C-13 CP/MAS NMR, FT-IR, UV-visible absorption spectra, elemental analysis, powder XRD, nitrogen adsorption-desorption isotherms and TEM techniques. Their catalytic properties were demonstrated in enantioselective Morita-Baylis-Hillman reaction of 3-phenylpropanal and cyclohexenone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Asymmetric catalysis is of paramount importance in organic synthesis and, in current practice, is achieved by means of homogeneous catalysts. The ability to catalyze such reactions heterogeneously would have a major impact both in the research laboratory and in the production of fine chemicals and pharmaceuticals, yet heterogeneous asymmetric hydrogenation of C═C bonds remains hardly explored. Very recently, we demonstrated how chiral ligands that anchor robustly to the surface of Pd nanoparticles promote asymmetric catalytic hydrogenation: ligand rigidity and stereochemistry emerged as key factors. Here, we address a complementary question: how does the enone reactant adsorb on the metal surface, and what implications does this have for the enantiodifferentiating interaction with the surface-tethered chiral modifiers? A reaction model is proposed, which correctly predicts the identity of the enantiomer experimentally observed in excess.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The focus of this thesis is the preparation of enantiopure sulfoxides by means of copper-catalysed asymmetric sulfoxidation, with particular emphasis on the synthesis of aryl benzyl and aryl alkyl sulfoxides. Chapter 1 contains a review of the methods employed for the asymmetric synthesis of sulfoxides, compounds with many applications in stereoselective synthesis and in some cases with pharmaceutical application. Chapter 1 describes asymmetric oxidation, including metal-catalysed, non metal-catalysed and enzyme-catalysed, in addition to synthetic approaches via nucleophilic substitution of appropriately substituted precursors. Kinetic resolution in oxidation of sulfoxides to the analogous sulfones is also discussed; in certain cases, access to enantioenriched sulfoxides can be achieved via a combination of asymmetric sulfoxidation and complementary kinetic resolution. The design and synthesis of a series of sulfides to enable exploration of the substituent effects of the copper-mediated oxidation was undertaken, and oxidation to the racemic sulfoxides and sulfones to provide reference samples was conducted. Oxidation of the sulfides using copper-Schiff base catalysis was undertaken leading to enantioenriched sulfoxides. The procedure employed is clean, inexpensive, not air-sensitive and utilises aqueous hydrogen peroxide as oxidant. Extensive investigation of the influence of the reaction conditions such as solvent, temperature, copper salt and ligand was undertaken to lead to the optimised conditions. While the direct attachment of one aryl substituent to the sulfide is essential for efficient enantiocontrol, in the case of the second substituent the enantiocontol is dependent on the steric rather than electronic features of the substituent. Significantly, use of naphthyl-substituted sulfides results in excellent enantiocontrol; notably 97% ee, obtained in the oxidation of 2-naphthyl benzyl sulfide, represents the highest enantioselectivity reported to date for a copper-mediated sulfur oxidation. Some insight into the mechanistic features of the copper-mediated sulfur oxidation has been developed based on this work, although further investigation is required to establish the precise nature of the catalytic species responsible for asymmetric sulfur oxidation. Full experimental details, describing the synthesis and structural characterisation, and determination of enantiopurity are included in chapter 3.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A practical asymmetric synthesis of a highly substituted N-acylpyrrolidine on multi-kilogram scale is described. The key step in the construction of the three stereocenters is a [3+2] cycloaddition of methyl acrylate and an imino ester prepared from L-leucine t-butyl ester hydrochloride and 2-thiazolecarboxaldehyde. The cycloaddition features novel asymmetric catalysis via a complex of silver acetate and a cinchona alkaloid, particularly hydroquinine, with complete diastereomeric control and up to 87% enantiomeric control. The alkaloid serves as a ligand as well as a base for the formation of the azomethine ylide or 1,3-dipole. Experiments have shown that the hydroxyl group of hydroquinine is a critical element for the enantioselectivities observed. The cycloaddition methodology is also applicable to methylvinyl ketone, providing access to either alpha- or beta-epimers of 4-acetylpyrrolidine depending on the reaction conditions utilized. The synthesis also highlights an efficient N-acylation, selective O- versus N-methylation, and a unique ester reduction with NaBH4-MeOH catalyzed by NaB(OAc)(3)H that not only achieves excellent chemoselectivity but also avoids formation of the undesired but thermodynamically favored epimer. The highly functionalized target is synthesized in seven linear steps from L-leucine t-butyl ester hydrochloride with all three isolated intermediates being highly crystalline.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tese de doutoramento, Farmácia (Química Farmacêutica e Terapêutica), Universidade de Lisboa, Faculdade de Farmácia, 2014