8 resultados para HETEROCOAGULATION
Resumo:
Herein, we report a new approach of an FePt nanoparticle formation mechanism studying the evolution of particle size and composition during the synthesis using the modified polyol process. One of the factors limiting their application in ultra-high-density magnetic storage media is the particle-to-particle composition, which affects the A1-to-L1(0) transformation as well as their magnetic properties. There are many controversies in the literature concerning the mechanism of the FePt formation, which seems to be the key to understanding the compositional chemical distribution. Our results convincingly show that, initially, Pt nuclei are formed due to reduction of Pt(acac)(2) by the diol, followed by heterocoagulation of Fe cluster species formed from Fe(acac)(3) thermal decomposition onto the Pt nuclei. Complete reduction of heterocoagulated iron species seems to involve a CO-spillover process, in which the Pt nuclei surface acts as a heterogeneous catalyst, leading to the improvement of the single-particle composition control and allowing a much narrower compositional distribution. Our results show significant decreases in the particle-to-particle composition range, improving the A1-to-L1(0) phase transformation and, consequently, the magnetic properties when compared with other reported methods.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
There are many industrial advantages of using mechanical multi-oxides mixtures to obtain ceramic parts by electrophoretic deposition (EPD). This is mainly because one could avoid complex chemical synthesis routes to achieve a desirable composition. However, EPD of these suspensions is not an easy task as well since many different surfaces are present, leading to unexpected suspension behavior. The particles surface potentials and interactions can, however, be predicted by an extension of the DLVO theory. Using this theory, one can control the suspension properties and particles distribution. The objective of this work was to apply the colloidal chemistry theories to promote the formation of a heterocoagulation between ZrO(2) and Y(2)O(3) particles in ethanol suspension to achieve a suitable condition for EPD. After identifying a condition where those particles had opposite surface charges and adequate relative sizes, heterocoagulation was observed at operational pH 7.5, generating an organized agglomerate with ZrO(2) particles surrounding Y(2)O(3), with a net zeta potential of -16.6 mV. Since the agglomerates were stable, EPD could be carried out and homogeneous deposits were obtained. The deposited bodies were sintered at 1600 A degrees C for 4 h and partially stabilized ZrO(2) could be obtained without traces of Y(2)O(3) second phases.
Resumo:
The destabilization mechanism of suspensions of positively charged iron oxide particles by aluminum sulphate was investigated, aiming to evaluate the efficiency of the latter as a coagulant for natural surface waters from iron ore mining plants. Synthetic waters that simulate natural suspensions were used. The best coagulant dosage was found to be 100 mg/L at pH 4. The specific adsorption of hydrolysis products of aluminum salts on iron oxide particles and heterocoagulation processes involving differently charged substrates are proposed to explain the turbidity reduction of the suspensions.
Resumo:
Acicular monodispersed Fe1-xREx (RE= Nd, Sm,Eu,Tb;x=0, 0.05, 0.10) metallic nanoparticles (60 +/- 5 nm in length and axial ratio similar to6) obtained by reduction of alumina-coated goethite nanoparticles-containing rare earth (RE) under hydrogen flow are reported. Alumina and maghemite thin layers on particle surface were used to protect the goethite particles against sintering and oxidation, respectively. Al and RE additions were obtained by successive heterocoagulation reactions. Aluminum sulfate (10 at.% based on Fe) was dissolved in water and the pH adjusted to 12.5 with NaOH solution. Goethite particles were suspended in this solution and CO2 gas was blown into the slurry to neutralize it to a pH 8.5 or less. Particles were purified and dehydrated to effect transformation to alumina-coated hematite nanoparticles, which were re-suspended in aqueous solution in which RE sulfate (0-0.15 at.% based on Fe) has been dissolved, and the pH increased by ammonia aqueous solution addition. Resulted alumina-coated RE-doped hematite nanoparticles were reduced to metal at 450 degreesC/12 h under hydrogen flow and passivated with nitrogen-containing ethanol vapor at room temperature. Acicular monodispersed metallic nanoparticle systems were obtained and the presence of Al and RE were confirmed by induced-coupled plasma spectrometry analysis. X-ray diffraction, Mossbauer spectroscopy, and magnetization data are in agreement with the nanosized alpha-Fe core in a bcc structure, having a spinel structure, gammaFe(2)O(3), with thickness similar to1.5 run on particle surface. Main magnetic parameters showed saturation magnetization decreases and significant increasing in the coercive field with the RE composition increases. Magnetic properties of these particles, similar to40% smaller than those commercially available, suggest a decrease in the bit-size for high-density magnetic or magneto-optics recording media application. (C) 2004 Published by Elsevier B.V.
Resumo:
The formation of silica on core yttrium iron garnet presents a variety of different applications as corrosion resistance and stabilization of magnetic properties. Well-defined magnetic particles were prepared by heterocoagulating silica on yttrium iron garnet to protect the core. Yttrium iron garnet was obtained using a homogeneous nucleation process by controlling the chemical routes from cation hydrolysis in acid medium. The heterocoagulation was induced by tetraethyl orthosilicate hydrolysis in appropriate yttrium iron garnet dispersion medium. The presence of silica on yttrium iron garnet was characterized by vibrating sample magnetometry, X-ray photoemission spectroscopy, transmission electron microscopy, small area electron diffraction and differential thermal analysis. © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Coated purpose of homogeneous distribution as a second phase is introduced in magnetic systems. Yttrium iron garnet (YIG) shows special interest as magnetic dye, microwave absorber, and magnetic fluids when heterocoagulated by other material. Surface and interface magnetic properties are intimately connected with the new properties of the silica on YIG system. Néel first introduced the concept of surface anisotropy, and Chen et al. developed a model that describes the anisotropy effects at the boundary surface particle, which was applied in this work. Spherical YIG particles were prepared by coprecipitation method and coated with silica using the tetraethylorthosilicate (TEOS) hydrolysis process. The silica-YIG boundary was investigated by transmission electron microscopy. Hysteresis loops comparatively show the profile of the naked and silica-covered YIG particles. The surface anisotropies were calculated using the Chen et al. approach. Indeed, in heterocoagulation systems, the surface anisotropy is a result of the interface symmetry breaking, as observed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)