911 resultados para HEPATIC


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose To study the protective effects and underlying molecular mechanisms of SAMC on carbon tetrachloride (CCl4)-induced acute hepatotoxicity in the mouse model. Methods Mice were intraperitoneally injected with CCl4 (50 μl/kg; single dose) to induce acute hepatotoxicity with or without a 2-h pre-treatment of SAMC intraperitoneal injection (200 mg/kg; single dose). After 8 h, the blood serum and liver samples of mice were collected and subjected to measurements of histological and molecular parameters of hepatotoxicity. Results SAMC reduced CCl4-triggered cellular necrosis and inflammation in the liver under histological analysis. Since co-treatment of SAMC and CCl4 enhanced the expressions of antioxidant enzymes, reduced the nitric oxide (NO)-dependent oxidative stress, and inhibited lipid peroxidation induced by CCl4. SAMC played an essential antioxidative role during CCl4-induced hepatotoxicity. Administration of SAMC also ameliorated hepatic inflammation induced by CCl4 via inhibiting the activity of NF-κB subunits p50 and p65, thus reducing the expressions of pro-inflammatory cytokines, mediators, and chemokines, as well as promoting pro-regenerative factors at both transcriptional and translational levels. Conclusions Our results indicate that SAMC mitigates cellular damage, oxidative stress, and inflammation in CCl4-induced acute hepatotoxicity mouse model through regulation of NF-κB. Garlic or garlic derivatives may therefore be a potential food supplement in the prevention of liver damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: Increases in inflammatory markers, hepatic enzymes and physical inactivity are associated with the development of the metabolic syndrome (MetS). We examined whether inflammatory markers and hepatic enzymes are correlated with traditional risk factors for MetS and studied the effects of resistance training (RT) on these emerging risk factors in individuals with a high number of metabolic risk factors (HiMF, 2.9 +/- 0.8) and those with a low number of metabolic risk factors (LoMF, 0.5 +/- 0.5). METHODS: Twenty-eight men and 27 women aged 50.8 +/- 6.5 years (mean +/- sd) participated in the study. Participants were randomized to four groups, HiMF training (HiMFT), HiMF control (HiMFC), LoMF training (LoMFT) and LoMF control (LoMFC). Before and after 10 weeks of RT [3 days/week, seven exercises, three sets with intensity gradually increased from 40-50% of one repetition maximum (1RM) to 75-85% of 1RM], blood samples were obtained for the measurement of pro-inflammatory cytokines, C-reactive protein (CRP), gamma-glutamyltransferase (GGT) and alanine aminotransferase (ALT). RESULTS: At baseline, HiMF had higher interleukin-6 (33.9%), CRP (57.1%), GGT (45.2%) and ALT (40.6%) levels, compared with LoMF (all P < 0.05). CRP, GGT and ALT correlated with the number of risk factors (r = 0.48, 0.51 and 0.57, respectively, all P < 0.01) and with other anthropometric and clinical measures (r range from 0.26 to 0.60, P < 0.05). RT did not significantly alter inflammatory markers or hepatic enzymes (all P > 0.05). CONCLUSIONS: HiMF was associated with increased inflammatory markers and hepatic enzyme concentrations. RT did not reduce inflammatory markers and hepatic enzymes in individuals with HiMF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The association between an adverse early life environment and increased susceptibility to later-life metabolic disorders such as obesity, type 2 diabetes and cardiovascular disease is described by the developmental origins of health and disease hypothesis. Employing a rat model of maternal high fat (MHF) nutrition, we recently reported that offspring born to MHF mothers are small at birth and develop a postnatal phenotype that closely resembles that of the human metabolic syndrome. Livers of offspring born to MHF mothers also display a fatty phenotype reflecting hepatic steatosis and characteristics of non-alcoholic fatty liver disease. In the present study we hypothesised that a MHF diet leads to altered regulation of liver development in offspring; a derangement that may be detectable during early postnatal life. Livers were collected at postnatal days 2 (P2) and 27 (P27) from male offspring of control and MHF mothers (n = 8 per group). Cell cycle dynamics, measured by flow cytometry, revealed significant G0/G1 arrest in the livers of P2 offspring born to MHF mothers, associated with an increased expression of the hepatic cell cycle inhibitor Cdkn1a. In P2 livers, Cdkn1a was hypomethylated at specific CpG dinucleotides and first exon in offspring of MHF mothers and was shown to correlate with a demonstrable increase in mRNA expression levels. These modifications at P2 preceded observable reductions in liver weight and liver:brain weight ratio at P27, but there were no persistent changes in cell cycle dynamics or DNA methylation in MHF offspring at this time. Since Cdkn1a up-regulation has been associated with hepatocyte growth in pathologic states, our data may be suggestive of early hepatic dysfunction in neonates born to high fat fed mothers. It is likely that these offspring are predisposed to long-term hepatic dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic liver injury and inflammation lead to hepatic fibrosis, cirrhosis, and liver failure. Embryonic and mesenchymal stem cells have been shown to reduce experimental liver fibrosis but have potential limitations, including the formation of dysplastic precursors, tumors, and profibrogenic cells. Other stem-like cells may reduce hepatic inflammation and fibrosis without tumor and profibrogenic cell formation. To test this hypothesis we transplanted human amnion epithelial cells (hAEC), isolated from term delivered placenta, into immunocompetent C57/BL6 mice at week 2 of a 4-week regimen of carbon tetrachloride (CCl4) exposure to induce liver fibrosis. Two weeks following hAEC infusion, intact cells expressing the human-specific markers inner mitochondrial membrane protein and human leukocyte antigen-G were found in mouse liver without evidence of host rejection of the transplanted cells. Human albumin, known to be produced by hAEC, was detected in sera of hAEC-treated mice. Human DNA was detected in mouse liver and also spleen, lungs, and heart of some animals. Following hAEC transplantation, CCl4-treated animals showed decreased serum ALT levels and reduced hepatocyte apoptosis, compared to controls. hAEC-treated mouse liver had lower TNF-α and IL-6 protein levels and higher IL-10 compared to animals given CCl4 alone. Compared to CCl4 controls, hAEC-treated mice showed fewer activated collagen-producing hepatic stellate cells and less fibrosis area and collagen content. Reduced hepatic TGF-β levels in conjunction with a twofold increase in the active form of the collagen-degrading enzyme matrix metalloproteinase-2 in hAEC-treated mice compared to CCl4 controls may account for the reduction in fibrosis. hAEC transplantation into immunocompetent mice leads to cell engraftment, reduced hepatocyte apoptosis, and decreased hepatic inflammation and fibrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accumulation of deficits with increasing age results in a decline in the functional capacity of multiple organs and systems. These changes can have a significant influence on the pharmacokinetics and pharmacodynamics of prescribed drugs. Although alterations in body composition and worsening renal clearance are important considerations, for most drugs the liver has the greatest effect on metabolism. Age-related change in hepatic function thereby causes much of the variability in older people’s responses to medication. In this review, we propose that a decline in the ability of the liver to inactivate toxins may contribute to a proinflammatory state in which frailty can develop. Since inflammation also downregulates drug metabolism, medication prescribed to frail older people in accordance with disease-specific guidelines may undergo reduced systemic clearance, leading to adverse drug reactions, further functional decline and increasing polypharmacy, exacerbating rather than ameliorating frailty status. We also describe how increasing chronological age and frailty status impact liver size, blood flow and protein binding and enzymes of drug metabolism. This is used to contextualise our discussion of appropriate prescribing practices. For example, while the general axiom of ‘start low, go slow’ should underpin the initiation of medication (titrating to a defined therapeutic goal), it is important to consider whether drug clearance is flow or capacity-limited. By summarising the effect of age-related changes in hepatic function on medications commonly used in older people, we aim to provide a guide that will have high clinical utility for practising geriatricians.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxidation of NADH by mouse liver plasma membranes was shown to be accompanied by the formation of H2O2. The rate of H2O2 formation was less than one-tenth the rate of oxygen uptake and much slower than the rate of reduction of artificial electron acceptors. The optimum pH for this reaction was 7.0 and theK m value for NADH was found to be 3×10–6 M. The H2O2-generating system of plasma membranes was inhibited by quinacrine and azide, thus distinguishing it from similar activities in endoplasmic reticulum and mitochondria. Both NADH and NADPH served as substrates for plasma membrane H2O2 generation. Superoxide dismutase and adriamycin inhibited the reaction. Vanadate, known to stimulate the oxidation of NADH by plasma membranes, did not increase the formation of H2O2. In view of the growing evidence that H2O2 can be involved in metabolic control, the formation of H2O2 by a plasma membrane NAD(P)H oxidase system may be pertinent to control sites at the plasma membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Norepinephrine inhibits cortisol-mediated induction of hepatic tryptophan pyrrolase in rats. During cold exposure the stabilization of this enzyme appears to occur by an interaction of corticoids and norepinephrine on the induction process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The depressed activity of hepatic 3-hydroxy-3-methylglutaryl CoA reductase in starved or cholesterol fed rats was stimulated on intraperitoneally administering small quantities of ATP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concentration of liver ubiquinone increased progressively with the time of feeding ubiquinone, and this increase was reflected in all the cell fractions. 2. 2. Inhibition of sterol synthesis by ubiquinone was exerted only in the liver, not in the kidney or intestine. 3. 3. Extending the period of feeding ubiquinone or increasing the concentration of ubiquinone fed had no effect on the extent of inhibition. 4. 4. Inhibition was found to be specific to ubiquinone-9, the natural major homologue in the rat liver; other homologues were ineffective. 5. 5. The site of inhibition by ubiquinone was indicated to be between acetyl-CoA and mevalonate, since there was no change in fatty acid and ketone body synthesis in ubiquinone-fed animals as compared to normal animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liver δ-aminolaevulate (ALA) synthetase and ALA dehydratase are induced to a greater extent in 3,5-diethoxy carbonyl-1,4-dihydrocollidine (DDC) injected mice as compared to the allyl isopropyl acetamide (AIA) injected rats. DDC treated mice do not show an increase in porphobilinogen (PEG) levels commensurate with the increase in ALA levels and the two enzyme activities, but accumulate enormous quantities of protoporphyrin in the liver. Normal mouse liver has an inherent greater capacity to convert PBG to porphyrins as compared to that of the rat. This together with the inhibition of iron incorporation into protoporphyrin in vivo at later stages of DDC administration can account for the large accumulation of protoporphyrin in these animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liver mitochondria isolated from vanadate-administered rats showed increased (20-25%) rates of oxidation of both NAD(+)-linked substrates and succinate. Respiratory control index and ADP/O were unaffected by the treatment. Dormant and uncoupler-stimulated ATPase activity also was not affected by vanadate administration. Membrane-bound, electron-transport-linked dehydrogenase activities (both NAD(+)- and succinate-dependent) increased by 15-20% on vanadate treatment. Mitochondrial alpha-glycerophosphate dehydrogenase activity increased by 50% on vanadate administration. The above effects of vanadate on oxidoreductase activities could be prevented by the prior administration of antagonists to alpha-adrenergic receptors. Substrate-dependent H2O2 generation by mitochondria also showed an increase on vanadate administration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inverse relationship that exists between thyroxine and the vitamin A level of plasma has been examined in chicken. Thyroxine treatment leads to a decrease in the level of vitamin A carrier proteins, retinol-binding protein and prealbumin-2 in plasma and liver. There is an accumulation of vitamin A in the liver, with a greater proportion of vitamin A alcohol being present compared to that of control birds. In thyroxine treatment there is enhanced plasma turnover of retinol-binding protein and prealbumin-2, while their rates of synthesis are marginally increased. Amino acid supplementation partially counteracts effects of thyroxine treatment. Amino acid supplementation of thyroxine-treated birds does not alter the plasma turnover rates of retinol-binding protein and prealbumin-2 but increases substentially their rates of synthesis. The release of vitamin A into circulation is interfered with in hyperthyroidism due to inadequate availability of retinol-binding protein being caused by enhanced plasma turnover rate not compensated for by synthesis.