999 resultados para HELIX-COIL TRANSITION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Poly(L-glutamic acid) (PLGA) was synthesized by living anionic ring-opening polymerization of the NCA monomer, which was obtained by reacting diphosgene with an amino acid derivative. The chemical structures and thermal properties were characterized by 1H-NMR, 13C-NMR, TGA and DSC. XRD powder patterns found to be amorphous for all polymers obtained. The molecular weights could be determined under severe limitations due to low solubility and high aggregation tendency. The secondary structure of the PLGA films was analyzed in the solid state by IR spectroscopy; the order was determined mainly by XRD. Uniform bulk films (1-5 µm) were produced by drop-casting of PLGA solutions in TFA on silica. The XRD film analysis indicated the absence of a long range order or an orientation even if a helical microstructure was confirmed by IR spectroscopy. The coil solvent TFA delivered constantly a helical or a β-sheet structure in the solid state depending on the water content of the solvent which was observed for the first time to exhibit a high influence on the crystallization process for PLGA. Temperature dependent in-situ IR measurements were examined to analyze if a helix-coil transition occurs, but there could be no solvent system determined, which resulted in a disordered coil structure in the solid state. General parameters like solvent systems, evaporation conditions, concentration, substrates etc. were analyzed. New crystallizations were obtained on silica prepared by drop-casting of solutions of PLGA in DMF, DMA, TMU, NMP, and pyridine/water mixtures, respectively. PSCBC in DMF, CDCl3/TFA-d, and PSBC in CDCl3/TFA-d exhibited the same crystalline diffraction patterns like PLGA. The long range order in the X-ray diffraction pattern is proven by extremely sharp crystalline signals, which are not changing the shape or the position of the peak by increasing the temperature up to 160°C. The substrate seems to play a decisive role because the crystalline structures were not obtainable on glass. The crystal structure consists probably of two different layered structures based on the intensity ratios of the two series of crystalline signals in the X-ray diffraction patterns. The source of the layered structure remains unclear and needs further studies to investigate the spatial arrangement of the chains in more detail. The secondary structure was still not changing upon heating even if a highly crystalline diffraction pattern occurs. Concluding that even the newly investigated crystallization did not show a helix-coil transition in the solid state by annealing, the phenomenon known in solution has to be claimed as unachievable in the solid state based on the results of this work. A remaining open question represents the observation that the same crystalline pattern can be reproducibly prepared with exhibiting two different ordered secondary structures (helix and β-sheet). After the investigation that the evaporation time cannot be decisive for the crystal growth, the choice of a strong hydrogen bonding interrupting solvent is most probably the key to support and induce the crystallization process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The helix-coil transition equilibrium of polypeptides in aqueous solution was studied by molecular dynamics simulation. The peptide growth simulation method was introduced to generate dynamic models of polypeptide chains in a statistical (random) coil or an alpha-helical conformation. The key element of this method is to build up a polypeptide chain during the course of a molecular transformation simulation, successively adding whole amino acid residues to the chain in a predefined conformation state (e.g., alpha-helical or statistical coil). Thus, oligopeptides of the same length and composition, but having different conformations, can be incrementally grown from a common precursor, and their relative conformational free energies can be calculated as the difference between the free energies for growing the individual peptides. This affords a straightforward calculation of the Zimm-Bragg sigma and s parameters for helix initiation and helix growth. The calculated sigma and s parameters for the polyalanine alpha-helix are in reasonable agreement with the experimental measurements. The peptide growth simulation method is an effective way to study quantitatively the thermodynamics of local protein folding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The host-guest technique has been applied to the determination of the helix-coil stability constants of two naturally occurring amino acids, L-alanine and L-leucine, in a nonaqueous solvent system. Random copolymers containing L-alanine and L-leucine, respectively, as guest residues and -benzyl-L-glutamate as the host residue were synthesized. The polymers were fractionated and characterized for their amino acid content, molecular weight, and helix-coil transition behavior in a dichloroacetic acid (DCA)-1,2-dichloroethane (DCE) mixture. Two types of helix-coil transitions were carried out on the copolymers: solvent-induced transitions in DCA-DCE mixtures at 25°C and thermally induced transitions in a 82:18 (wt %) DCA-DCE mixture. The thermally induced transitions were analyzed by statistical mechanical methods to determine the Zimm-Bragg parameters, and s, of the guest residues. The experimental data indicate that, in the nonaqueous solvent, the L-alanine residue stabilizes the -helical conformation more than the L-leucine residue does. This is in contrast to their behavior in aqueous solution, where the reverse is true. The implications of this finding for the analysis of helical structures in globular proteins are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An abstract of a thesis devoted to using helix-coil models to study unfolded states.\\

Research on polypeptide unfolded states has received much more attention in the last decade or so than it has in the past. Unfolded states are thought to be implicated in various

misfolding diseases and likely play crucial roles in protein folding equilibria and folding rates. Structural characterization of unfolded states has proven to be

much more difficult than the now well established practice of determining the structures of folded proteins. This is largely because many core assumptions underlying

folded structure determination methods are invalid for unfolded states. This has led to a dearth of knowledge concerning the nature of unfolded state conformational

distributions. While many aspects of unfolded state structure are not well known, there does exist a significant body of work stretching back half a century that

has been focused on structural characterization of marginally stable polypeptide systems. This body of work represents an extensive collection of experimental

data and biophysical models associated with describing helix-coil equilibria in polypeptide systems. Much of the work on unfolded states in the last decade has not been devoted

specifically to the improvement of our understanding of helix-coil equilibria, which arguably is the most well characterized of the various conformational equilibria

that likely contribute to unfolded state conformational distributions. This thesis seeks to provide a deeper investigation of helix-coil equilibria using modern

statistical data analysis and biophysical modeling techniques. The studies contained within seek to provide deeper insights and new perspectives on what we presumably

know very well about protein unfolded states. \\

Chapter 1 gives an overview of recent and historical work on studying protein unfolded states. The study of helix-coil equilibria is placed in the context

of the general field of unfolded state research and the basics of helix-coil models are introduced.\\

Chapter 2 introduces the newest incarnation of a sophisticated helix-coil model. State of the art modern statistical techniques are employed to estimate the energies

of various physical interactions that serve to influence helix-coil equilibria. A new Bayesian model selection approach is utilized to test many long-standing

hypotheses concerning the physical nature of the helix-coil transition. Some assumptions made in previous models are shown to be invalid and the new model

exhibits greatly improved predictive performance relative to its predecessor. \\

Chapter 3 introduces a new statistical model that can be used to interpret amide exchange measurements. As amide exchange can serve as a probe for residue-specific

properties of helix-coil ensembles, the new model provides a novel and robust method to use these types of measurements to characterize helix-coil ensembles experimentally

and test the position-specific predictions of helix-coil models. The statistical model is shown to perform exceedingly better than the most commonly used

method for interpreting amide exchange data. The estimates of the model obtained from amide exchange measurements on an example helical peptide

also show a remarkable consistency with the predictions of the helix-coil model. \\

Chapter 4 involves a study of helix-coil ensembles through the enumeration of helix-coil configurations. Aside from providing new insights into helix-coil ensembles,

this chapter also introduces a new method by which helix-coil models can be extended to calculate new types of observables. Future work on this approach could potentially

allow helix-coil models to move into use domains that were previously inaccessible and reserved for other types of unfolded state models that were introduced in chapter 1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conformational transition from coil to extended coil for polygalacturonic acid has been studied by conductometric titrations and Monte Carlo simulations. The results of conductometric titrations at different polymer concentrations have been analyzed using the model proposed by Manning,1 which describes the conductivity of polyelectrolitic solutions. This experimental approach provides the transport factor and the average distance between charged groups at different degrees of ionization (α). The mean distances between charged groups have been compared with the values obtained by Monte Carlo simulations. In these simulations the polymer chain is modeled as a self-avoiding random walk in a cubic lattice. The monomers interact through the unscreened Coulombic potential. The ratio between the end-to-end distance and the number of ionized beads provides the average distance between charged monomers. The experimental and theoretical values are in good agreement for the whole range of ionization degrees accessed by conductometric titrations. These results suggest that the electrostatic interactions seem to be the major contribution for the coil to extended coil conformational change. The small deviations for α ≤ 0.5 suggests that the stiffness of the chain, associated with local interactions, becomes increasingly significant as the fraction of charged groups is decreased. © 2000 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the crystal structure of Thermus aquaticus DNA polymerase I in complex with an inhibitory Fab, TP7, directed against the native enzyme. Some of the residues present in a helical conformation in the native enzyme have adopted a γ turn conformation in the complex. Taken together, structural information that describes alteration of helical structure and solution studies that demonstrate the ability of TP7 to inhibit 100% of the polymerase activity of the enzyme suggest that the change in conformation is probably caused by trapping of an intermediate in the helix-coil dynamics of this helix by the Fab. Antibodies directed against modified helices in proteins have long been anticipated. The present structure provides direct crystallographic evidence. The Fab binds within the DNA binding cleft of the polymerase domain, interacting with several residues that are used by the enzyme in binding the primer:template complex. This result unequivocally corroborates inferences drawn from binding experiments and modeling calculations that the inhibitory activity of this Fab is directly attributable to its interference with DNA binding by the polymerase domain of the enzyme. The combination of interactions made by the Fab residues in both the polymerase and the vestigial editing nuclease domain of the enzyme reveal the structural basis of its preference for binding to DNA polymerases of the Thermus species. The orientation of the structure-specific nuclease domain with respect to the polymerase domain is significantly different from that seen in other structures of this polymerase. This reorientation does not appear to be antibody-induced and implies remarkably high relative mobility between these two domains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Galactokinase, the enzyme which catalyses the first committed step in the Leloir pathway, has attracted interest due to its potential as a biocatalyst and as a possible drug target in the treatment of type I galactosemia. The mechanism of the enzyme is not fully elucidated. Molecular dynamics (MD) simulations of galactokinase with the active site residues Arg-37 and Asp-186 altered predicted that two regions (residues 174-179 and 231-240) had different dynamics as a consequence. Interestingly, the same two regions were also affected by alterations in Arg-105, Glu-174 and Arg- 228. These three residues were identified as important in catalysis in previous computational studies on human galactokinase. Alteration of Arg-105 to methionine resulted in a modest reduction in activity with little change in stability. When Arg-228 was changed to methionine, the enzyme’s interaction with both ATP and galactose was affected. This variant was significantly less stable than the wild-type protein. Changing Glu-174 to glutamine (but not to aspartate) resulted in no detectable activity and a less stable enzyme. Overall, these combined in silico and in vitro studies demonstrate the importance of a negative charge at position 174 and highlight the critical role of the dynamics in to key regions of the protein. We postulate that these regions may be critical for mediating the enzyme’s structure and function. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the potential of pulsed power to sterilize hard and soft tissues and its impact on their physico-mechanical properties. It hypothesizes that pulsed plasma can sterilize both vascular and avascular tissues and the transitive layers in between without deleterious effects on their functional characteristics. Cartilage/bone laminate was chosen as a model to demonstrate the concept, treated at low temperature, at atmospheric pressure, in short durations and in buffered environment using a purposed-built pulsed power unit. Input voltage and time of exposure were assigned as controlling parameters in a full factorial design of experiment to determine physical and mechanical alteration pre- and post-treatment. The results demonstrated that, discharges of 11 kV sterilized samples in 45 s, reducing intrinsic elastic modules from 1.4 ± 0.9 to 0.9 ± 0.6 MPa. There was a decrease of 14.1 % in stiffness and 27.8 % in elastic-strain energy for the top quartile. Mechanical impairment was directly proportional to input voltage (P value < 0.05). Bacterial inactivation was proportional to treatment time for input voltages above 32 V (P < 0.001; R Sq = 0.98). Thermal analysis revealed that helix-coil transition decelerated with exposure time and collagen fibrils were destabilized as denaturation enthalpy reduced by 200 μV. We concluded by presenting a safe operating threshold for pulsed power plasma as a feasible protocol for effective sterilization of connective tissues with varying level of loss in mechanical robustness which we argue to be acceptable in certain medical and tissue engineering application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction of daunomycin with sodium dodecyl sulfate and Triton X-100 micelles was investigated as a model for the hydrophobic contribution to the free energy of DNA intercalation reactions. Measurements of visible absorbance, fluorescence lifetime, steady-state fluorescence emission intensity, and fluorescence anisotropy indicate that the anthraquinone ring partitions into the hydrophobic micelle interior. Fluorescence quenching experiments using both steady-state and lifetime measurements demonstrate reduced accessibility of daunomycin in sodium dodecyl sulfate micelles to the anionic quencher iodide and to the neutral quencher acrylamide. Quenching of daunomycin fluorescence by iodide in Triton X-100 micelles was similar to that seen with free daunomycin. Studies of the energetics of the interaction of daunomycin with micelles by fluorescence and absorbance titration methods and by isothermal titration calorimetry in the presence of excess micelles revealed that association with sodium dodecyl sulfate and Triton X-100 micelles is driven by a large negative enthalpy. Association of the drug with both types of micelles also has a favorable entropic contribution, which is larger in magnitude for Triton X-100 micelles than for sodium dodecyl sulfate micelles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to study the theological and thermal properties of film forming solutions (FFS) based on blends of gelatin and poly(vinyl alcohol) (PVA). The effect of the PVA concentration and plasticizer presence on the flow behavior, and viscoelastic and thermal properties of FFS was studied by steady-shear flow and oscillatory experiments, and also, by microcalorimetry. The FB presented Newtonian behavior at 30 degrees C, and the viscosity was not affected neither by the PVA concentration nor by the plasticizer. All FFS presented a phase transition during tests applying temperature scanning. It was verified that the PVA affected the viscoelastic properties of FFS by dilution of gelatin. This behavior was confirmed by microcalorimetric analysis. The behaviors of the storage (G`) and loss (G ``) moduli as a function of frequency of FFS obtained at 5 degrees C were typical of physical gels; with the G` higher than the G ``. The strength of the gels was affected by the PVA concentration. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nucleocapsid protein (NC) of HIV type 1 is a nucleic acid chaperone that facilitates the rearrangement of nucleic acids into conformations containing the maximum number of complementary base pairs. We use an optical tweezers instrument to stretch single DNA molecules from the helix to coil state at room temperature in the presence of NC and a mutant form (SSHS NC) that lacks the two zinc finger structures present in NC. Although both NC and SSHS NC facilitate annealing of complementary strands through electrostatic attraction, only NC destabilizes the helical form of DNA and reduces the cooperativity of the helix-coil transition. In particular, we find that the helix-coil transition free energy at room temperature is significantly reduced in the presence of NC. Thus, upon NC binding, it is likely that thermodynamic fluctuations cause continuous melting and reannealing of base pairs so that DNA strands are able to rapidly sample configurations to find the lowest energy state. The reduced cooperativity allows these fluctuations to occur in the middle of complex double-stranded structures. The reduced stability and cooperativity, coupled with the electrostatic attraction generated by the high charge density of NC, is responsible for the nucleic acid chaperone activity of this protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental information on the structure and dynamics of molten globules gives estimates for the energy landscape's characteristics for folding highly helical proteins, when supplemented by a theory of the helix-coil transition in collapsed heteropolymers. A law of corresponding states relating simulations on small lattice models to real proteins possessing many more degrees of freedom results. This correspondence reveals parallels between "minimalist" lattice results and recent experimental results for the degree of native character of the folding transition state and molten globule and also pinpoints the needs of further experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of modulated temperature differential scanning calorimetry (MTDSC) has provided further insight into the gelatinisation process since it allows the detection of glass transition during gelatinisation process. It was found in this work that the glass transition overlapped with the gelatinisation peak temperature for all maize starch formulations studied. Systematic investigation on maize starch gelatinisation over a range of water-glycerol concentrations with MTDSC revealed that the addition of glycerol increased the gelatinisation onset temperature with an extent that depended on the water content in the system. Furthermore, the addition of glycerol promoted starch gelatinisation at low water content (0.4 g water/g dry starch) and the enthalpy of gelatinisation varied with glycerol concentration (0.73-19.61 J/g dry starch) depending on the water content and starch type. The validities of published gelatinisation models were explored. These models failed to explain the glass transition phenomena observed during the course of gelatinisation and failed to describe the gelatinisation behaviour observed over the water-glycerol concentrations range investigated. A hypothesis for the mechanisms involved during gelatinisation was proposed based on the side chain liquid crystalline polymer model for starch structure and the concept that the order-disorder transition in starch requires that the hydrogen bonds (the major structural element in the granule packing) to be broken before the collapse of order (helix-coil transition) can take place. (C) 2004 Elsevier Ltd. All rights reserved.