957 resultados para HEALTHY-MEN
Resumo:
To verify whether fluorescence in situ hybridization (FISH) of cells from the buccal epithelium could be employed to detect cryptomosaicism with a 45,X lineage in 46,XY patients. Samples of nineteen 46,XY healthy young men and five patients with disorders of sex development (DSD), four 45,X/46,XY and one 46,XY were used. FISH analysis with X and Y specific probes on interphase nuclei from blood lymphocytes and buccal epithelium were analyzed to investigate the proportion of nuclei containing only the signal of the X chromosome. The frequency of nuclei containing only the X signal in the two tissues of healthy men did not differ (p = 0.69). In all patients with DSD this frequency was significantly higher, and there was no difference between the two tissues (p = 0.38), either. Investigation of mosaicism with a 45,X cell line in patients with 46,XY DSD or sterility can be done by FISH directly using cells from the buccal epithelium.
Resumo:
P>Background This study examined the effects of acute supramaximal exercise (similar to 115% VO(2max)) on the blood lipid profile for three different carbohydrate (CHO) storage levels (control, low and high). Methods Six male subjects were randomly divided into three different groups: control, low CHO and high CHO. These groups differed in the diet to which the subjects were submitted before each exercise session. The lipid profile [triglycerides (TG), very low-density lipoprotein (VLDL), high-density lipoprotein (HDL)-cholesterol, low-density lipoprotein (LDL)-cholesterol, TG/HDL-C ratio and total cholesterol) was determined at rest, immediately after exercise and 1 h after exercise bouts. Results The time to exhaustion was lower in the low CHO condition compared with the control and high CHO condition (3 center dot 59 +/- 0 center dot 72; 2 center dot 91 +/- 0 center dot 56; and 4 center dot 26 +/- 0 center dot 69 min; P < 0 center dot 05). The energy expenditure (control: 251 center dot 1 +/- 56 center dot 0 kJ; low CHO: 215 center dot 2 +/- 28 center dot 6 kJ; and high CHO: 310 center dot 4 +/- 64 center dot 9 kJ) was significantly different between the low and high CHO conditions (P < 0 center dot 05). There were no significant changes in the lipid profile for any of the experimental conditions (control, low and high; P < 0 center dot 05). Glucose and insulin levels did not show time-dependent changes in any of the conditions (P > 0 center dot 05). Conclusions These results indicate that a supramaximal exercise session has no significant effects on lipid metabolism.
Resumo:
BACKGROUND: Lower body negative pressure (LBNP) has been shown to induce a progressive activation of neurohormonal systems, and a renal tubular and hemodynamic response that mimics the renal adaptation observed in congestive heart failure (CHF). As beta-blockers play an important role in the management of CHF patients, the effects of metoprolol on the renal response were examined in healthy subjects during sustained LBNP. METHODS: Twenty healthy male subjects were randomized in this double blind, placebo versus metoprolol 200 mg once daily, study. After 10 days of treatment, each subject was exposed to 3 levels of LBNP (0, -10, and -20 mbar) for 1 hour, each level of LBNP being separated by 2 days. Neurohormonal profiles, systemic and renal hemodynamics, as well as renal sodium handling were measured before, during, and after LBNP. RESULTS: Blood pressure and heart rate were significantly lower in the metoprolol group throughout the study (P < 0.01). GFR and RPF were similar in both groups at baseline, and no change in renal hemodynamic values was detected at any level of LBNP. However, a reduction in sodium excretion was observed in the placebo group at -20 mbar, whereas no change was detected in the metoprolol group. An increase in plasma renin activity was also observed at -20 mbar in the placebo group that was not observed with metoprolol. CONCLUSION: The beta-blocker metoprolol prevents the sodium retention induced by lower body negative pressure in healthy subjects despite a lower blood pressure. The prevention of sodium retention may be due to a blunting of the neurohormonal response. These effects of metoprolol on the renal response to LBNP may in part explain the beneficial effects of this agent in heart failure patients.
Resumo:
OBJECTIVES: The thermogenic effect of amrinone is unknown and its utilization in patients with severe cardiac failure could potentially increase oxygen requirements and therefore aggravate oxygen debt. Consequently, the present study was undertaken to assess the thermogenic response to amrinone at three different plasma concentrations under controlled conditions and to analyze amrinone's effects on various biochemical variables. DESIGN: A prospective, unblinded, controlled study. The initial control period was followed by three sequential, experimental treatments. SUBJECTS: Ten young, healthy, male volunteers with normal body weight. INTERVENTIONS: Three experimental periods. Amrinone was administered intravenously in progressive doses: a) 0.5 mg/kg followed by 5 micrograms/kg/min; b) 0.5 mg/kg followed by 10 micrograms/kg/min; and c) 1.0 mg/kg followed by 10 micrograms/kg/min. MEASUREMENTS AND MAIN RESULTS: Oxygen consumption (VO2) and CO2 production were continuously measured by means of a computerized indirect calorimeter. At the highest dose, amrinone produced a slight and significant (p < .01) increase in VO2 and in resting metabolic rate (+4.5% and +3.7%, respectively), while no change in CO2 production or in respiratory quotient occurred throughout the study. At the medium and high doses, amrinone increased plasma free fatty acid concentrations by 38% and 53%, respectively (p < .05). No variation in plasma glucose, lactate, insulin, norepinephrine, or epinephrine concentrations was observed during the study. CONCLUSIONS: Amrinone administered intravenously at therapeutic doses has minimal thermogenic and metabolic effects in humans without cardiac failure.
Resumo:
AIMS: A high-fructose diet (HFrD) may play a role in the obesity and metabolic disorders epidemic. In rodents, HFrD leads to insulin resistance and ectopic lipid deposition. In healthy humans, a four-week HFrD alters lipid homoeostasis, but does not affect insulin sensitivity or intramyocellular lipids (IMCL). The aim of this study was to investigate whether fructose may induce early molecular changes in skeletal muscle prior to the development of whole-body insulin resistance. METHODS: Muscle biopsies were taken from five healthy men who had participated in a previous four-week HFrD study, during which insulin sensitivity (hyperinsulinaemic euglycaemic clamp), and intrahepatocellular lipids and IMCL were assessed before and after HFrD. The mRNA concentrations of 16 genes involved in lipid and carbohydrate metabolism were quantified before and after HFrD by real-time quantitative PCR. RESULTS: HFrD significantly (P<0.05) increased stearoyl-CoA desaturase-1 (SCD-1) (+50%). Glucose transporter-4 (GLUT-4) decreased by 27% and acetyl-CoA carboxylase-2 decreased by 48%. A trend toward decreased peroxisomal proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) was observed (-26%, P=0.06). All other genes showed no significant changes. CONCLUSION: HFrD led to alterations of SCD-1, GLUT-4 and PGC-1alpha, which may be early markers of insulin resistance.
Resumo:
Résumé Interaction entre les lipides alimentaires et l'inactivité physique sur la sensibilité à l'insuline et les lipides intramyocellulaires chez le sujet masculin en bonne santé Ces deux dernières décennies, l'incidence de la résistance à l'insuline n'a cessé de progresser dans les pays industrialisés. Un grand nombre de travaux suggèrent que ce trouble métabolique joue un rôle important dans la pathogenèse de maladies propres au monde industrialisé, telles que le diabète, l'hypertension et les maladies cardiovasculaires. Malgré de nombreuses études, les mécanismes à l'origine de la résistance à l'insuline restent encore incomplètement élucidés. En plus d'une composante génétique, de nombreux facteurs environnementaux semblent impliqués parmi ces derniers, nous nous sommes intéressés à l'effet d'une alimentation riche en graisses associée à une période d'inactivité physique de courte durée. Nous nous sommes également penchés sur la corrélation décrite entre la résistance à l'insuline et la concentration de graisses présentes à l'intérieur des cellules musculaires squelettiques, appelées lipides intramyocellulaires. Pour ce faire, 8 volontaires masculins ont été étudiés à deux occasions. Après deux jours de diète équilibrée associée à une activité physique, les participants étaient confinés au lit strict pour 60 heures et devaient manger une alimentation soit riche en graisses saturées soit riche en hydrates de carbones. Pour évaluer l'effet de l'alimentation seule, 6 des 8 volontaires ont été réétudiés après deux jours de diète équilibrée suivie par 60 heures d'alimentation riche en graisses saturées associées à une activité physique contrôlée. Nous avons estimé la sensibilité à l'insuline par la technique du clamp hyperinsulinémique euglycémique alors que la concentration de lipides intramyocellulaires a été déterminée par spectroscopie par résonance magnétique. Après 60 heures d'inactivité physique associée à une alimentation riche en lipides, nous avons observé une diminution de l'utilisation de glucose dépendante de l'insuline (-24±6%; p<0.05), alors qu'aucune modification significative de ce même paramètre n'a été constatée lorsque l'inactivité physique était associée à une alimentation riche en hydrates de carbones (+19±10%). Ces deux conditions se sont accompagnées d'une augmentation des lipides intramyocellulaires (+32±7% et +17±8% respectivement). Bien que l'augmentation des lipides intramyocellulaires observée après 60 heures d'une alimentation riche en graisses saturées associée à une activité physique modérée fût d'une ampleur similaire à celle de la condition associant une alimentation riche en graisses et inactivité physique, l'utilisation de glucose induite par l'insuline n'a pas été modifiée de manière significative (-7±9%) Ces résultats indiquent que l'inactivité physique et une alimentation riche en graisses saturées semblent interagir, induisant une diminution de la sensibilité à l'insuline globale. La concentration de lipides intramyocellulaires a été influencée par les lipides issus de l'alimentation et l'inactivité physique, sans être toutefois corrélée à la résistance à l'insuline. Abstract OBJECTIVE - To assess the effect of a possible interaction between dietary fat and physical inactivity on whole-body insulin sensitivity and intramyocellular lipids (IMCLs). RESEARCH DESIGN AND METHODS - Eight healthy male volunteers were studied on two occasions. After 2 days of an equilibrated diet and moderate physical activity, participants remained inactive (bed rest) for 60 h and consumed either a high-saturated fat (45% fat, of which ~60% was saturated fat [BR-HF]) or a high-carbohydrate (70% carbohydrate [BR-HCHO]) diet. To evaluate the effect of a high-fat diet alone, six of the eight volunteers were restudied after a 2-day equilibrated diet followed by 60 h on a high-saturated fat diet and controlled physical activity (PA-HF). Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp and IMCL concentrations by H-magnetic resonance spectroscopy. RESULTS - Insulin-mediated glucose disposal was decreased by BR-HF condition (-24 ± 6%, P < 0.05) but did not change with BR-HCHO ( + 19 ± 10%, NS). BR-HF and BR-HCHO increased IMCL levels (+32 ± 7%, P < 0.05 and +17 ± 8%, P < 0.0011, respectively). Although the increase in IMCL levels with PA-HF (+31 ± 19%, P = 0.12) was similar to that during BR-HF, insulin-mediated glucose disposal ( -7 ± 9%, NS) was not decreased. CONCLUSIONS - These data indicate that physical inactivity and a high-saturated fat diet may interact to reduce whole-body insulin sensitivity. IMCL content was influenced by dietary lipid and physical inactivity but was not directly associated with insulin resistance.
Resumo:
The effect of acute intravenous dopamine (DA) administration at three sequential (but randomized) infusion rates was studied in eight young male volunteers. DA was infused at 2.5, 5, and 10 micrograms.kg-1.min-1. O2 consumption (VO2) and CO2 production (VCO2) were measured continuously by means of a computerized indirect calorimeter (blood system). In response to the 5- and 10-micrograms.kg-1.min-1 DA infusion rates, a significant increase (P less than 0.01) in VO2 corresponding to a 6% (range, 3-10) and 15% (range, 12-23) increase, respectively, of preinfusion values was observed. In contrast, at the low dose (2.5 micrograms.kg-1.min-1), DA induced no significant change in VO2. Cardiac output (Qc) increased significantly after the three DA administration rates [19% (range, 0-42), 34% (range, 17-71), and 25% (range, -3 to +47)] for the doses 2.5, 5, and 10 micrograms.-kg-1.min-1, respectively. The increase in O2 delivery (QO2) outweighed VO2 at all administration rates despite the relative drop in QO2 at the maximal DA administration rate. These results indicate that in humans DA improves net O2 supply to tissues proportionally more than it increases VO2 at all doses used in the present study.
Resumo:
Glitazones are used in the treatment of type 2 diabetes as efficient insulin sensitizers. They can, however, induce peripheral edema through an unknown mechanism in up to 18% of cases. In this double-blind, randomized, placebo-controlled, four-way, cross-over study, we examined the effects of a 6-wk administration of pioglitazone (45 mg daily) or placebo on the blood pressure, hormonal, and renal hemodynamic and tubular responses to a low (LS) and a high (HS) sodium diet in healthy volunteers. Pioglitazone had no effect on the systemic and renal hemodynamic responses to salt, except for an increase in daytime heart rate. Urinary sodium excretion and lithium clearance were lower with pioglitazone, particularly with the LS diet (P < 0.05), suggesting increased sodium reabsorption at the proximal tubule. Pioglitazone significantly increased plasma renin activity with the LS (P = 0.02) and HS (P = 0.03) diets. Similar trends were observed with aldosterone. Atrial natriuretic levels did not change with pioglitazone. Body weight increased with pioglitazone in most subjects. Pioglitazone stimulates plasma renin activity and favors sodium retention and weight gain in healthy volunteers. These effects could contribute to the development of edema in some subjects treated with glitazones.
Resumo:
OBJECTIVE: To assess the thermogenic response of dopamine at three different infusion rates and to analyze its effects on various biochemical variables. DESIGN: Randomized sequential experimental treatment bracketed by control periods. PATIENTS: Eight young healthy male volunteers with normal body weight (51 to 89 kg). INTERVENTIONS: Three experimental periods during which dopamine was administered iv in a randomized order at rates of 2.5, 5, or 10 micrograms/kg.min with one preinfusion baseline and two recovery periods in between. MEASUREMENTS AND MAIN RESULTS: A significant (p less than .01) increase in resting energy expenditure was observed in response to the two highest dopamine infusion rates (5 and 10 micrograms/kg.min), corresponding to 6% and 15% median increases, respectively, as compared with preinfusion values. At the lowest dopamine infusion rate, no variation in resting energy expenditure was observed. Dopamine induced a significant (p less than .01) increase in hyperglycemia at all three infusion rates, and, at the highest infusion rate, dopamine induced a significant (p less than .05) increase of plasma free fatty acid concentrations. Insulin plasma concentrations were significantly (p less than .05 to p less than 0.1) increased at the three dopamine infusion rates. CONCLUSIONS: Dopamine infusion produces a dose-dependent thermogenic effect and induces various metabolic actions in man.
Resumo:
High-fructose diet stimulates hepatic de novo lipogenesis (DNL) and causes hypertriglyceridemia and insulin resistance in rodents. Fructose-induced insulin resistance may be secondary to alterations of lipid metabolism. In contrast, fish oil supplementation decreases triglycerides and may improve insulin resistance. Therefore, we studied the effect of high-fructose diet and fish oil on DNL and VLDL triglycerides and their impact on insulin resistance. Seven normal men were studied on four occasions: after fish oil (7.2 g/day) for 28 days; a 6-day high-fructose diet (corresponding to an extra 25% of total calories); fish oil plus high-fructose diet; and control conditions. Following each condition, fasting fractional DNL and endogenous glucose production (EGP) were evaluated using [1-13C]sodium acetate and 6,6-2H2 glucose and a two-step hyperinsulinemic-euglycemic clamp was performed to assess insulin sensitivity. High-fructose diet significantly increased fasting glycemia (7 +/- 2%), triglycerides (79 +/- 22%), fractional DNL (sixfold), and EGP (14 +/- 3%, all P < 0.05). It also impaired insulin-induced suppression of adipose tissue lipolysis and EGP (P < 0.05) but had no effect on whole- body insulin-mediated glucose disposal. Fish oil significantly decreased triglycerides (37%, P < 0.05) after high-fructose diet compared with high-fructose diet without fish oil and tended to reduce DNL but had no other significant effect. In conclusion, high-fructose diet induced dyslipidemia and hepatic and adipose tissue insulin resistance. Fish oil reversed dyslipidemia but not insulin resistance.
Resumo:
BACKGROUND: Epidemiologic and experimental data have suggested that chlorogenic acid, which is a polyphenol contained in green coffee beans, prevents diet-induced hepatic steatosis and insulin resistance. OBJECTIVE: We assessed whether the consumption of chlorogenic acid-rich coffee attenuates the effects of short-term fructose overfeeding, dietary conditions known to increase intrahepatocellular lipids (IHCLs), and blood triglyceride concentrations and to decrease hepatic insulin sensitivity in healthy humans. DESIGN: Effects of 3 different coffees were assessed in 10 healthy volunteers in a randomized, controlled, crossover trial. IHCLs, hepatic glucose production (HGP) (by 6,6-d2 glucose dilution), and fasting lipid oxidation were measured after 14 d of consumption of caffeinated coffee high in chlorogenic acid (C-HCA), decaffeinated coffee high in chlorogenic acid, or decaffeinated coffee with regular amounts of chlorogenic acid (D-RCA); during the last 6 d of the study, the weight-maintenance diet of subjects was supplemented with 4 g fructose · kg(-1) · d(-1) (total energy intake ± SD: 143 ± 1% of weight-maintenance requirements). All participants were also studied without coffee supplementation, either with 4 g fructose · kg(-1) · d(-1) (high fructose only) or without high fructose (control). RESULTS: Compared with the control diet, the high-fructose diet significantly increased IHCLs by 102 ± 36% and HGP by 16 ± 3% and decreased fasting lipid oxidation by 100 ± 29% (all P < 0.05). All 3 coffees significantly decreased HGP. Fasting lipid oxidation increased with C-HCA and D-RCA (P < 0.05). None of the 3 coffees significantly altered IHCLs. CONCLUSIONS: Coffee consumption attenuates hepatic insulin resistance but not the increase of IHCLs induced by fructose overfeeding. This effect does not appear to be mediated by differences in the caffeine or chlorogenic acid content. This trial was registered at clinicaltrials.gov as NCT00827450.
Resumo:
The purpose of the present study was to evaluate the effects of aerobic physical training (APT) on heart rate variability (HRV) and cardiorespiratory responses at peak condition and ventilatory anaerobic threshold. Ten young (Y: median = 21 years) and seven middle-aged (MA = 53 years) healthy sedentary men were studied. Dynamic exercise tests were performed on a cycloergometer using a continuous ramp protocol (12 to 20 W/min) until exhaustion. A dynamic 24-h electrocardiogram was analyzed by time (TD) (standard deviation of mean R-R intervals) and frequency domain (FD) methods. The power spectral components were expressed as absolute (a) and normalized units (nu) at low (LF) and high (HF) frequencies and as the LF/HF ratio. Control (C) condition: HRV in TD (Y: 108, MA: 96 ms; P<0.05) and FD - LFa, HFa - was significantly higher in young (1030; 2589 ms²/Hz) than in middle-aged men (357; 342 ms²/Hz) only during sleep (P<0.05); post-training effects: resting bradycardia (P<0.05) in the awake condition in both groups; VO2 increased for both groups at anaerobic threshold (P<0.05), and at peak condition only in young men; HRV in TD and FD (a and nu) was not significantly changed by training in either groups. The vagal predominance during sleep is reduced with aging. The resting bradycardia induced by short-term APT in both age groups suggests that this adaptation is much more related to intrinsic alterations in sinus node than in efferent vagal-sympathetic modulation. Furthermore, the greater alterations in VO2 than in HRV may be related to short-term APT.
Resumo:
The effects of the aging process and an active life-style on the autonomic control of heart rate (HR) were investigated in nine young sedentary (YS, 23 ± 2.4 years), 16 young active (YA, 22 ± 2.1 years), 8 older sedentary (OS, 63 ± 2.4 years) and 8 older active (OA, 61 ± 1.1 years) healthy men. Electrocardiogram was continuously recorded for 15 min at rest and for 4 min in the deep breathing test, with a breath rate of 5 to 6 cycles/min in the supine position. Resting HR and RR intervals were analyzed by time (RMSSD index) and frequency domain methods. The power spectral components are reported in normalized units (nu) at low (LF) and high (HF) frequency, and as the LF/HF ratio. The deep breathing test was analyzed by the respiratory sinus arrhythmia indices: expiration/inspiration ratio (E/I) and inspiration-expiration difference (deltaIE). The active groups had lower HR and higher RMSSD index than the sedentary groups (life-style condition: sedentary vs active, P < 0.05). The older groups showed lower HFnu, higher LFnu and higher LF/HF ratio than the young groups (aging effect: young vs older, P < 0.05). The OS group had a lower E/I ratio (1.16) and deltaIE (9.7 bpm) than the other groups studied (YS: 1.38, 22.4 bpm; YA: 1.40, 21.3 bpm; OA: 1.38, 18.5 bpm). The interaction between aging and life-style effects had a P < 0.05. These results suggest that aging reduces HR variability. However, regular physical activity positively affects vagal activity on the heart and consequently attenuates the effects of aging in the autonomic control of HR.