187 resultados para HDR BRACHYTHERAPY
Resumo:
Purpose: Several attempts to determine the transit time of a high dose rate (HDR) brachytherapy unit have been reported in the literature with controversial results. The determination of the source speed is necessary to accurately calculate the transient dose in brachytherapy treatments. In these studies, only the average speed of the source was measured as a parameter for transit dose calculation, which does not account for the realistic movement of the source, and is therefore inaccurate for numerical simulations. The purpose of this work is to report the implementation and technical design of an optical fiber based detector to directly measure the instantaneous speed profile of a (192)Ir source in a Nucletron HDR brachytherapy unit. Methods: To accomplish this task, we have developed a setup that uses the Cerenkov light induced in optical fibers as a detection signal for the radiation source moving inside the HDR catheter. As the (192)Ir source travels between two optical fibers with known distance, the threshold of the induced signals are used to extract the transit time and thus the velocity. The high resolution of the detector enables the measurement of the transit time at short separation distance of the fibers, providing the instantaneous speed. Results: Accurate and high resolution speed profiles of the 192Ir radiation source traveling from the safe to the end of the catheter and between dwell positions are presented. The maximum and minimum velocities of the source were found to be 52.0 +/- 1.0 and 17.3 +/- 1:2 cm/s. The authors demonstrate that the radiation source follows a uniformly accelerated linear motion with acceleration of vertical bar a vertical bar = 113 cm/s(2). In addition, the authors compare the average speed measured using the optical fiber detector to those obtained in the literature, showing deviation up to 265%. Conclusions: To the best of the authors` knowledge, the authors directly measured for the first time the instantaneous speed profile of a radiation source in a HDR brachytherapy unit traveling from the unit safe to the end of the catheter and between interdwell distances. The method is feasible and accurate to implement on quality assurance tests and provides a unique database for efficient computational simulations of the transient dose. (C) 2010 American Association of Physicists in Medicine. [DOI: 10.1118/1.3483780]
Resumo:
Purpose/Objective: To evaluate the outcome of prostate cancer patients treated with a combination of HDR Brachytherapy boost (HDR-BT) and 3D conformal external pelvic radiotherapy (EBRT) in a dose escalation study. Materials and Methods: 162 patients were followed between November 2004 and December 2010 . Two different dose escalation groups were done: group 1 (n= 92), 1 fraction HDR boost (9-10 Gy ) followed by EBRT (60 Gy in 6 weeks) - BED: 203-216 Gy and group 2 (n=70): 2 fraction HDR boost (18-19 Gy), 6 hours interval between fractions, followed by EBRT (46 Gy in 4.5 weeks) - BED: 233.3 -247 Gy; 116 pts (71.6%) received concomitant androgen deprivation. Patients were classified according to the MSKCC criteria into high (N=137) and intermediate (N=25) risk. Phoenix biochemical failure definition was used. Toxicity was scored by Radiation Morbidity Scoring Criteria (RTOG) Results: The mean follow-up was 41 (range 7-84) months. The 7- years cancer-specific and overall survival was 100% an 92%, respectively. The 7 years actuarial biochemical control rate was 89% and 100% for group 1 and 2, respectively. One patient from group 1 and two patients from group 2 never reached a low nadir. Two patients developed distant metastases 12 and 16 months after the treatment. In a multivariate Cox-regression analysis neither treatment nor risk group (intermediate vs. high risk) were associated with increased risk for biochemical failure. The RTOG grade 3 genitourinary early toxicity was 1.0% and 8.5% while gastrointestinal/genitourinary late toxicity was 7.6% and 1.4% for group 1 and 2, respectively Conclusions: HDR BT boost followed by EBRT appears to be a safe, feasible and effective treatment for patients with unfavorable localized prostate cancer. This study shows a beneficial effect on biochemical control in group 2 pts, however without statistical significance. Higher radiation doses (BED 233.3-247 Gy) do not seem to carry extra toxicity.
Resumo:
BACKGROUND AND PURPOSE: This is the first study investigating neoadjuvant interstitial high-dose-rate (HDR) brachytherapy combined with chemotherapy in patients with breast cancer. The goal was to evaluate the type of surgical treatment, histopathologic response, side effects, local control, and survival. PATIENTS AND METHODS: 53 patients, who could not be treated with breast-conserving surgery due to initial tumor size (36/53) or due to an unfavorable breast-tumor ratio (17/53), were analyzed retrospectively. All but one were in an intermediate/high-risk group (St. Gallen criteria). The patients received a neoadjuvant protocol consisting of systemic chemotherapy combined with fractionated HDR brachytherapy (2 x 5 Gy/day, total dose 30 Gy). In cases, where breast-conserving surgery was performed, patients received additional external-beam radiotherapy (EBRT, 1.8 Gy/day, total dose 50.4 Gy). In patients, who underwent mastectomy but showed an initial tumor size of T3/T4 and/or more than three infiltrated lymph nodes, EBRT was also performed. RESULTS: In 30/53 patients (56.6%) breast-conserving surgery could be performed. The overall histopathologic response rate was 96.2% with a complete remission in 28.3% of patients. 49/53 patients were evaluable for follow-up. After a median of 58 months (45-72 months), one patient showed a mild fibrosis of the breast tissue, three patients had mild to moderate lymphatic edema of the arm. 6/49 (12.2%) patients died of distant metastases, 4/49 (8.2%) were alive with disease, and 39/49 (79.6%) were free from disease. Local recurrence was observed in only one case (2%) 40 months after primary therapy. After mastectomy, this patient is currently free from disease. CONCLUSION: The combination of interstitial HDR brachytherapy and chemotherapy is a well-tolerated and effective neoadjuvant treatment in patients with breast cancer. Compared to EBRT, treatment time is short. Postoperative EBRT of the whole breast -- if necessary -- is still possible after neoadjuvant brachytherapy. Even though the number of patients does not permit definite conclusions, the results are promising regarding survival and the very low rate of local recurrences.
Resumo:
This work aimed to create a mailable and OSLD-based phantom with accuracy suitable for RPC audits of HDR brachytherapy sources at institutions participating in NCI-funded cooperative clinical trials. An 8 × 8 × 10 cm3 prototype with two slots capable of holding nanoDot Al2O3:C OSL dosimeters (Landauer, Glenwood, IL) was designed and built. The phantom has a single channel capable of accepting all 192Ir HDR brachytherapy sources in current clinical use in the United States. Irradiations were performed with an 192Ir HDR source to determine correction factors for linearity with dose, dose rate, and the combined effect of irradiation energy and phantom construction. The uncertainties introduced by source positioning in the phantom and timer resolution limitations were also investigated. It was found that the linearity correction factor was where dose is in cGy, which differed from that determined by the RPC for the same batch of dosimeters under 60Co irradiation. There was no significant dose rate effect. Separate energy+block correction factors were determined for both models of 192Ir sources currently in clinical use and these vendor-specific correction factors differed by almost 2.6%. For Nucletron sources, this correction factor was 1.026±0.004 (99% Confidence Interval) and for Varian sources it was 1.000±0.007 (99% CI). Reasonable deviations in source positioning within the phantom and the limited resolution of the source timer had insignificant effects on the ability to measure dose. Overall measurement uncertainty of the system was estimated to be ±2.5% for both Nucletron and Varian source audits (95% CI). This uncertainty was sufficient to establish a ±5% acceptance criterion for source strength audits under a formal RPC audit program. Trial audits of eight participating institutions resulted in an average RPC-to-institution dose ratio of 1.000 with a standard deviation of 0.011.
Resumo:
Background and purpose: To evaluate biochemical control and treatment related toxicity of patients with localized adenocarcinoma of the prostate treated with high dose-rate brachytherapy (HDRB) combined with conventional 2D or 3D-conformal external beam irradiation (EBI). Material and methods: Four-hundred and three patients treated between December 2000 and March 2004. HDRB was delivered with three fractions of 5.5-7 Gy with a single implant, followed by 45 Gy delivered with 2D or 3D conformal EBI. Results: The median follow-up was 48.4 months. Biochemical failure (BF) occurred in 9.6% according to both ASTRO and Phoenix consensus criteria. Mean time to relapse was 13 and 26 months, respectively. The 5-year BF free survival using the ASTRO criteria was 94.3%, 86.9% and 86.6% for the low, intermediate and high risk groups, respectively; using Phoenix criteria, 92.4%, 88.0% and 85.3%, respectively. The only predictive factor of BF in the multivariate analysis by both ASTRO and Phoenix criteria was the presence of prostate nodules detected by digital palpation, and patients younger than 60 years presented a higher chance of failure using Phoenix criteria only. Conclusions: Treatment scheme is feasible and safe with good efficacy. (C) 2011 Elsevier Ireland Ltd All rights reserved. Radiotherapy and Oncology 98 (2011) 169-174
Resumo:
To analyze the outcome after low-dose-rate (LDR) or high-dose-rate (HDR) brachytherapy for lip cancer.
Resumo:
BACKGROUND AND PURPOSE: Analyses of permanent brachytherapy seed implants of the prostate have demonstrated that the use of a preplan may lead to a considerable decrease of dosimetric implant quality. The authors aimed to determine whether the same drawbacks of preplanning also apply to high-dose-rate (HDR) brachytherapy. PATIENTS AND METHODS: 15 patients who underwent two separate HDR brachytherapy implants in addition to external-beam radiation therapy for advanced prostate cancer were analyzed. A pretherapeutic transrectal ultrasound was performed in all patients to generate a preplan for the first brachytherapy implant. For the second brachytherapy, a subset of patients were treated by preplans based on the ultrasound from the first brachytherapy implant. Preplans were compared with the respective postplans assessing the following parameters: coverage index, minimum target dose, homogeneity index, and dose exposure of organs at risk. The prostate geometries (volume, width, height, length) were compared as well. RESULTS: At the first brachytherapy, the matching between the preplan and actual implant geometry was sufficient in 47% of the patients, and the preplan could be applied. The dosimetric implant quality decreased considerably: the mean coverage differed by -0.11, the mean minimum target dose by -0.15, the mean homogeneity index by -0.09. The exposure of organs at risk was not substantially altered. At the second brachytherapy, all patients could be treated by the preplan; the differences between the implant quality parameters were less pronounced. The changes of prostate geometry between preplans and postplans were considerable, the differences in volume ranging from -8.0 to 13.8 cm(3) and in dimensions (width, height, length) from -1.1 to 1.0 cm. CONCLUSION: Preplanning in HDR brachytherapy of the prostate is associated with a substantial decrease of dosimetric implant quality, when the preplan is based on a pretherapeutic ultrasound. The implant quality is less impaired in subsequent implants of fractionated brachytherapy.
Resumo:
Recentemente foi desenvolvido um dosímetro baseado em fibras cintilantes (BCF-12 da companhia Saint Gobain Crystals com 1 e 0,5 mm de diâmetro e 5 mm de comprimento) para braquiterapia de baixa taxa de dose, em particular a braquiterapia direcionada para o tratamento do cancro da próstata. Este utiliza um novo fotomultiplicador de estado sólido dado pelo nome de MPPC - MultiPixel Photon Counter da companhia Hamamatsu Photonics (Japão). Nesta dissertação é estudado o mesmo dosímetro para a modalidade de braquiterapia de elevada taxa de dose (HDR). A informação sobre a dose neste tipo de dosímetros é obtida a partir de sinais óticos (em vez de sinais elétricos), que são imunes a interferências elétricas e eletromagnéticas. Adicionalmente as pequenas dimensões das fibras oferecem uma excelente resolução espacial e uma invasão mínima para uso em dosimetria in vivo, permitindo medir a dose diretamente ou próximo ao tumor e em tempo real. A sua utilização em braquiterapia para o cancro da próstata constitui-se assim como uma vantagem, uma vez que as fibras podem ser inseridas diretamente nos aplicadores utilizados neste tipo de tratamentos. Apesar de tudo, este tipo de dosímetros possui algumas desvantagens, como por exemplo a luz de Cherenkov e a fluorescência (forma de ruído dada pelo nome de stem effect) que, e a contrário da luz produzida pela fibra cintilante, não são diretamente proporcionais à energia depositada. Contudo, e para energias praticadas em braquiterapia de HDR, nesta dissertação, mostrou-se que este problema é pouco significativo dado que a percentagem de contribuição destes efeitos para o sinal medido é menor que 1% (ou 5% para distâncias menores que 25 mm). Ao longo desta dissertação é feita a caraterização do dosímetro (em modo corrente e impulso) e das suas várias partes em ambiente de laboratório e clínico. Nestes estudos o dosímetro, além de exibir uma boa reprodutibilidade (variação máxima de 3% entre medidas), mostrou uma alta linearidade para uma ampla gama de doses, assim como uma sensibilidade (µGy) semelhante à de uma câmara de ionização, tornando-o adequado para braquiterapia de HDR (tratamento que envolve altos gradientes de dose). Complementarmente, a sua grande versatilidade e simples utilização possibilita a sua aplicação prática em outras modalidades radioterapêuticas.
Resumo:
In radiotherapy, computational systems are used for radiation dose determination in the treatment’s volume and radiometric parameters quality analysis of equipment and field irradiated. Due to the increasing technological advancement, several research has been performed in brachytherapy for different computational algorithms development which may be incorporated to treatment planning systems, providing greater accuracy and confidence in the dose calculation. Informatics and information technology fields undergo constant updating and refinement, allowing the use Monte Carlo Method to simulate brachytherapy source dose distribution. The methodology formalization employed to dosimetric analysis is based mainly in the American Association of Physicists in Medicine (AAPM) studies, by Task Group nº 43 (TG-43) and protocols aimed at dosimetry of these radiation sources types. This work aims to analyze the feasibility of using the MCNP-5C (Monte Carlo N-Particle) code to obtain radiometric parameters of brachytherapy sources and so to study the radiation dose variation in the treatment planning. Simulations were performed for the radiation dose variation in the source plan and determined the dosimetric parameters required by TG-43 formalism for the characterization of the two high dose rate iridium-192 sources. The calculated values were compared with the presents in the literature, which were obtained with different Monte Carlo simulations codes. The results showed excellent consistency with the compared codes, enhancing MCNP-5C code the capacity and viability in the sources dosimetry employed in HDR brachytherapy. The method employed may suggest a possible incorporation of this code in the treatment planning systems provided by manufactures together with the equipment, since besides reducing acquisition cost, it can also make the used computational routines more comprehensive, facilitating the brachytherapy ...
Resumo:
Ce projet de recherche s’inscrit dans le domaine de la dosimétrie à scintillation en radiothérapie, plus précisément en curiethérapie à haut débit de dose (HDR). Lors de ce type de traitement, la dose est délivrée localement, ce qui implique de hauts gradients de dose autour de la source. Le but de ce travail est d’obtenir un détecteur mesurant la dose en 2 points distincts et optimisé pour la mesure de dose en curiethérapie HDR. Pour ce faire, le projet de recherche est séparé en deux études : la caractérisation spectrale du détecteur à 2-points et la caractérisation du système de photodétecteur menant à la mesure de la dose. D’abord, la chaine optique d’un détecteur à scintillation à 2-points est caractérisée à l’aide d’un spectromètre afin de déterminer les composantes scintillantes optimales. Cette étude permet de construire quelques détecteurs à partir des composantes choisies pour ensuite les tester avec le système de photodétecteur multi-point. Le système de photodétecteur est aussi caractérisé de façon à évaluer les limites de sensibilité pour le détecteur 2-points choisi précédemment. L’objectif final est de pouvoir mesurer le débit de dose avec précision et justesse aux deux points de mesure du détecteur multi-point lors d’un traitement de curiethérapie HDR.
A Feasibility Study Of Fricke Dosimetry As An Absorbed Dose To Water Standard For 192ir Hdr Sources.
Resumo:
High dose rate brachytherapy (HDR) using 192Ir sources is well accepted as an important treatment option and thus requires an accurate dosimetry standard. However, a dosimetry standard for the direct measurement of the absolute dose to water for this particular source type is currently not available. An improved standard for the absorbed dose to water based on Fricke dosimetry of HDR 192Ir brachytherapy sources is presented in this study. The main goal of this paper is to demonstrate the potential usefulness of the Fricke dosimetry technique for the standardization of the quantity absorbed dose to water for 192Ir sources. A molded, double-walled, spherical vessel for water containing the Fricke solution was constructed based on the Fricke system. The authors measured the absorbed dose to water and compared it with the doses calculated using the AAPM TG-43 report. The overall combined uncertainty associated with the measurements using Fricke dosimetry was 1.4% for k = 1, which is better than the uncertainties reported in previous studies. These results are promising; hence, the use of Fricke dosimetry to measure the absorbed dose to water as a standard for HDR 192Ir may be possible in the future.
Resumo:
INTRODUCTION: To report acute and late toxicities in patients with intermediate- and high-risk prostate cancer treated with combined high-dose-rate brachytherapy (HDR-B) and intensity-modulated radiation therapy (IMRT). MATERIALS AND METHODS: From March 2003 to September 2005, 64 men were treated with a single implant HDR-B with 21 Gy given in three fractions, followed by 50 Gy IMRT along with organ tracking. Median age was 66.1 years, and risk of recurrence was intermediate in 47% of the patients or high in 53% of the patients. Androgen deprivation therapy was received by 69% of the patients. Toxicity was scored according to the CTCAE version 3.0. Median follow-up was 3.1 years. RESULTS: Acute grade 3 genitourinary (GU) toxicity was observed in 7.8% of the patients, and late grades 3 and 4 GU toxicity was observed in 10.9% and 1.6% of the patients. Acute grade 3 gastrointestinal (GI) toxicity was experienced by 1.6% of the patients, and late grade 3 GI toxicity was absent. The urethral V(120) (urethral volume receiving > or =120% of the prescribed HDR-B dose) was associated with acute (P=.047) and late > or = grade 2 GU toxicities (P=.049). CONCLUSIONS: Late grades 3 and 4GU toxicity occurred in 10.9% and 1.6% of the patients after HDR-B followed by IMRT in association with the irradiated urethral volume. The impact of V(120) on GU toxicity should be validated in further studies.
Resumo:
The intrinsic physical and radiobiological characteristics of High Dose Rate Brachytherapy (HDR-BT) are well suited to the treatment of prostate cancer. HDR-BT was initially used as a boost to external beam brachytherapy, but has subsequently been employed as the sole treatment, which is termed HDR monotherapy. This review summarizes the clinical outcomes and toxicity results of the principal studies and discusses the radiobiological basis supporting its use.