8 resultados para H3N8


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Equine influenza virus (EIV) surveillance is important in the management of equine influenza. It provides data on circulating and newly emerging strains for vaccine strain selection. To this end, antigenic characterisation by haemaggluttination inhibition (HI) assay and phylogenetic analysis was carried out on 28 EIV strains isolated in North America and Europe during 2006 and 2007. In the UK, 20 viruses were isolated from 28 nasopharyngeal swabs that tested positive by enzyme-linked immunosorbent assay. All except two of the UK viruses were characterised as members of the Florida sublineage with similarity to A/eq/Newmarket/5/03 (clade 2). One isolate, A/eq/Cheshire/1/06, was characterised as an American lineage strain similar to viruses isolated up to 10 years earlier. A second isolate, A/eq/Lincolnshire/1/07 was characterised as a member of the Florida sublineage (clade 1) with similarity to A/eq/Wisconsin/03. Furthermore, A/eq/Lincolnshire/1/06 was a member of the Florida sublineage (clade 2) by haemagglutinin (HA) gene sequence, but appeared to be a member of the Eurasian lineage by the non-structural gene (NS) sequence suggesting that reassortment had occurred. A/eq/Switzerland/P112/07 was characterised as a member of the Eurasian lineage, the first time since 2005 that isolation of a virus from this lineage has been reported. Seven viruses from North America were classified as members of the Florida sublineage (clade 1), similar to A/eq/Wisconsin/03. In conclusion, a variety of antigenically distinct EIVs continue to circulate worldwide. Florida sublineage clade 1 viruses appear to predominate in North America, clade 2 viruses in Europe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1970, searching for the interspecies transmission of influenza viruses led to the first study on influenza viruses in domestic animals. Birds and mammals, including human beings, are their natural hosts; however, other animals may also play a role in the virus epidemiology. The objective was to investigate the incidence of influenza viruses in adult dogs raised in rural (9, 19.56%) and urban (37, 80.43%) areas in the state of São Paulo, Brazil. Dog serum samples were examined for antibodies to influenza viruses by the hemagglutination inhibition (HI) test using the corresponding antigens from the circulating viruses in Brazil. Dogs from rural areas presented antibodies to influenza A H3N2, and influenza A H7N7 and H3N8. In rural areas, dog sera displayed mean titers as 94.37, 227.88, 168.14, 189.62 HIU/25 µL for subtypes H1N1, H3N2, H7N7, H3N8, respectively. About 84% and 92% of dogs from urban areas exhibited antibodies to human influenza A H1N1 and H3N2, respectively, with statistical difference at p < 0.05 between the mean titers of antibodies to H1N1 and H3N2. About 92% and 100% were positive for H7N7 and H3N8, respectively. In dogs from urban areas, the mean titers of antibodies against influenza A H1N1, H3N2, H7N7 and H3N8, were 213.96, 179.42, 231.76, 231.35 HIU/25 µL respectively. The difference among them was not statistically significant at p > 0.05. In conclusion, these dogs were positive for both human and equine influenza viruses. The present study suggests the first evidence that influenza viruses circulate among dogs in Brazil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Equines are susceptible to respiratory viruses such as influenza and parainfluenza. Respiratory diseases have adversely impacted economies all over the world. This study was intended to determine the presence of influenza and parainfluenza viruses in unvaccinated horses from some regions of the state of São Paulo, Brazil. Blood serum collected from 72 equines of different towns in this state was tested by hemagglutination inhibition test to detect antibodies for both viruses using the corresponding antigens. About 98.6% (71) and 97.2% (70) of the equines responded with antibody protective titers (≥ 80 HIU/25µL) H7N7 and H3N8 subtypes of influenza A viruses, respectively. All horses (72) also responded with protective titers (≥ 80) HIU/25µL against the parainfluenza virus. The difference between mean antibody titers to H7N7 and H3N8 subtypes of influenza A viruses was not statistically significant (p > 0.05). The mean titers for influenza and parainfluenza viruses, on the other hand, showed a statistically significant difference (p < 0.001). These results indicate a better antibody response from equines to parainfluenza 3 virus than to the equine influenza viruses. No statistically significant differences in the responses against H7N7 and H3N8 subtypes of influenza A and parainfluenza 3 viruses were observed according to the gender (female, male) or the age (≤ 2 to 20 years-old) groups. This study provides evidence of the concomitant presence of two subtypes of the equine influenza A (H7N7 and H3N8) viruses and the parainfluenza 3 virus in equines in Brazil. Thus, it is advisable to vaccinate equines against these respiratory viruses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The prevalence of antibodies against Equine Influenza Virus (EIV) was determined in 529 equines living on ranches in the municipality of Poconé, Pantanal area of Brazil, by means of the hemagglutination inhibition test, using subtype H3N8 as antigen. The distribution and possible association among positive animal and ranches were evaluated by the chi-square test, spatial autoregressive and multiple linear regression models. The prevalence of antibodies against EIV was estimated at 45.2% (95% CI 30.2 - 61.1%) with titers ranging from 20 to 1,280 HAU. Seropositive equines were found on 92.0% of the surveyed ranches. Equine from non-flooded ranches (66.5%) and negativity in equine infectious anemia virus (EIAV) (61.7%) were associated with antibodies against EIV. No spatial correlation was found among the ranches, but the ones located in non-flooded areas were associated with antibodies against EIV. A negative correlation was found between the prevalence of antibodies against EIV and the presence of EIAV positive animals on the ranches. The high prevalence of antibodies against EIV detected in this study suggests that the virus is circulating among the animals, and this statistical analysis indicates that the movement and aggregation of animals are factors associated to the transmission of the virus in the region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The list of animal viruses has been frequently added of new members raising permanent concerns to virologists and veterinarians. The pathogenic potential and association with disease have been clearly demonstrated for some, but not for all of these emerging viruses. This review describes recent discoveries of animal viruses and their potential relevance for veterinary practice. Dogs were considered refractory to influenza viruses until 2004, when an influenza A virus subtype H3N8 was transmitted from horses and produced severe respiratory disease in racing greyhounds in Florida/USA. The novel virus, named canine influenza virus (CIV), is considered now a separate virus lineage and has spread among urban canine population in the USA. A new pestivirus (Flaviviridae), tentatively called HoBi-like pestivirus, was identified in 2004 in commercial fetal bovine serum from Brazil. Hobi-like viruses are genetically and antigenically related to bovine viral diarrhea virus (BVDV) and induce similar clinical manifestations. These novel viruses seem to be widespread in Brazilian herds and have also been detected in Southeast Asia and Europe. In 2011, a novel mosquito-borne orthobunyavirus, named Schmallenberg virus (SBV), was associated with fever, drop in milk production, abortion and newborn malformation in cattle and sheep in Germany. Subsequently, the virus disseminated over several European countries and currently represents a real treat for animal health. The origin of SBV is still a matter of debate but it may be a reassortant from previous known bunyaviruses Shamonda and Satuperi. Hepatitis E virus (HEV, family Hepeviridae) is a long known agent of human acute hepatitis and in 1997 was first identified in pigs. Current data indicates that swine HEV is spread worldwide, mainly associated with subclinical infection. Two of the four HEV genotypes are zoonotic and may be transmitted between swine and human by contaminated water and undercooked pork meat. The current distribution and impact of HEV infection in swine production are largely unknown. Avian gyrovirus type 2 (AGV2) is a newly described Gyrovirus, family Circoviridae, which was unexpectedly found in sera of poultry suspected to be infected with chicken anemia virus (CAV). AGV2 is closely related to CAV but displays sufficient genomic differences to be classified as a distinct species. AGV2 seems to be distributed in Brazil and also in other countries but its pathogenic role for chickens is still under investigation. Finally, the long time and intensive search for animal relatives of human hepatitis C virus (HCV) has led to the identification of novel hepaciviruses in dogs (canine hepacivirus [CHV]), horses (non-primate hepaciviruses [NPHV] or Theiler's disease associated virus [TDAV]) and rodents. For these, a clear and definitive association with disease is still lacking and only time and investigation will tell whether they are real disease agents or simple spectators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

EQUINE influenza A virus (EIV) is a highly infectious respiratory pathogen of horses (Hannant and Mumford 1996, Palese and Shaw 2007). The illness is characterized by an abrupt onset of fever, depression, coughing and nasal discharge, and is often complicated by secondary bacterial infections that can lead to pneumonia and death. Two subtypes of EIV, H3N8 and H7N7, have been isolated. The H7N7 subtype was first isolated from a horse in Czechoslovakia in 1956 (Prague/56), and the H3N8 subtype was first isolated from a horse in Miami in 1963 (Sovinova and others 1958, Waddell and others 1963). The last confirmed outbreak of H7N7 occurred in 1979, and this subtype is now considered to be either extinct or circulating at low levels in a few geographical areas (Ismail and others 1990, Webster 1993, Singh 1994, Madic and others 1996, van Maanen and Cullinane 2002). The H3N8 subtype is a common cause of disease in horses worldwide, particularly in areas where vaccination is not routinely performed (Paillot and others 2006).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INFLUENZA A virus (IAV) (family Orthomyxoviridae) is a highly infectious respiratory pathogen of birds and mammals, including human beings and horses (Palese and Shaw 2007). The virus is classified into different subtypes based on the antigenic properties of the haemagglutinin (HA) and neuraminidase (NA) proteins. Sixteen HA subtypes (H1 to H16) and nine NA subtypes (N1 to N9) have been identified (Fouchier and others 2005). Two subtypes, H3N8 and H7N7, have been isolated from horses. The H7N7 subtype was first isolated from a horse in Czechoslovakia in 1956 (Prague/56) (Sovinova and others 1958), and the H3N8 subtype was first isolated from a horse in Miami, USA, in 1963 (Waddell and others 1963). The H7N7 subtype has not been isolated from horses for three decades and is presumed to be extinct (Webster 1993). The H3N8 subtype is currently a common cause of disease in horses worldwide. In horses, influenza is characterized by an abrupt onset of pyrexia, depression, coughing and nasal discharge, and is often complicated by secondary bacteria infections that can lead to pneumonia and death (Hannant and Mumford 1996). Although H3N8 is a major cause of morbidity in horses throughout the world, information on the seroprevalence of IAV in horses and other domestic animals in Mexico is limited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1970, searching for the interspecies transmission of influenza viruses led to the first study on influenza viruses in domestic animals. Birds and mammals, including human beings, are their natural hosts; however, other animals may also play a role in the virus epidemiology. The objective was to investigate the incidence of influenza viruses in adult dogs raised in rural (9, 19.56%) and urban (37, 80.43%) areas in the state of Sao Paulo, Brazil. Dog serum samples were examined for antibodies to influenza viruses by the hemagglutination inhibition (HI) test using the corresponding antigens from the circulating viruses in Brazil. Dogs from rural areas presented antibodies to influenza A H3N2, and influenza A H7N7 and H3N8. In rural areas, dog sera displayed mean titers as 94.37, 227.88, 168.14, 189.62 HIU/25 mu L for subtypes H1N1, H3N2, H7N7, H3N8, respectively. About 84% and 92% of dogs from urban areas exhibited antibodies to human influenza A H1N1 and H3N2, respectively, with statistical difference at p < 0.05 between the mean titers of antibodies to H1N1 and H3N2. About 92% and 100% were positive for H7N7 and H3N8, respectively. In dogs from urban areas, the mean titers of antibodies against influenza A H1N1, H3N2, H7N7 and H3N8, were 213.96, 179.42, 231.76, 231.35 HIU/25 mu L respectively. The difference among them was not statistically significant at p > 0.05. In conclusion, these dogs were positive for both human and equine influenza viruses. The present study suggests the first evidence that influenza viruses circulate among dogs in Brazil.