986 resultados para H-d equations
Application of the Boundary Method to the determination of the properties of the beam cross-sections
Resumo:
Using the 3-D equations of linear elasticity and the asylllptotic expansion methods in terms of powers of the beam cross-section area as small parameter different beam theories can be obtained, according to the last term kept in the expansion. If it is used only the first two terms of the asymptotic expansion the classical beam theories can be recovered without resort to any "a priori" additional hypotheses. Moreover, some small corrections and extensions of the classical beam theories can be found and also there exists the possibility to use the asymptotic general beam theory as a basis procedure for a straightforward derivation of the stiffness matrix and the equivalent nodal forces of the beam. In order to obtain the above results a set of functions and constants only dependent on the cross-section of the beam it has to be computed them as solutions of different 2-D laplacian boundary value problems over the beam cross section domain. In this paper two main numerical procedures to solve these boundary value pf'oblems have been discussed, namely the Boundary Element Method (BEM) and the Finite Element Method (FEM). Results for some regular and geometrically simple cross-sections are presented and compared with ones computed analytically. Extensions to other arbitrary cross-sections are illustrated.
Resumo:
In this work, the relationship between diameter at breast height (d) and total height (h) of individual-tree was modeled with the aim to establish provisory height-diameter (h-d) equations for maritime pine (Pinus pinaster Ait.) stands in the Lomba ZIF, Northeast Portugal. Using data collected locally, several local and generalized h-d equations from the literature were tested and adaptations were also considered. Model fitting was conducted by using usual nonlinear least squares (nls) methods. The best local and generalized models selected, were also tested as mixed models applying a first-order conditional expectation (FOCE) approximation procedure and maximum likelihood methods to estimate fixed and random effects. For the calibration of the mixed models and in order to be consistent with the fitting procedure, the FOCE method was also used to test different sampling designs. The results showed that the local h-d equations with two parameters performed better than the analogous models with three parameters. However a unique set of parameter values for the local model can not be used to all maritime pine stands in Lomba ZIF and thus, a generalized model including covariates from the stand, in addition to d, was necessary to obtain an adequate predictive performance. No evident superiority of the generalized mixed model in comparison to the generalized model with nonlinear least squares parameters estimates was observed. On the other hand, in the case of the local model, the predictive performance greatly improved when random effects were included. The results showed that the mixed model based in the local h-d equation selected is a viable alternative for estimating h if variables from the stand are not available. Moreover, it was observed that it is possible to obtain an adequate calibrated response using only 2 to 5 additional h-d measurements in quantile (or random) trees from the distribution of d in the plot (stand). Balancing sampling effort, accuracy and straightforwardness in practical applications, the generalized model from nls fit is recommended. Examples of applications of the selected generalized equation to the forest management are presented, namely how to use it to complete missing information from forest inventory and also showing how such an equation can be incorporated in a stand-level decision support system that aims to optimize the forest management for the maximization of wood volume production in Lomba ZIF maritime pine stands.
Resumo:
Based on the first-order upwind and second-order central type of finite volume( UFV and CFV) scheme, upwind and central type of perturbation finite volume ( UPFV and CPFV) schemes of the Navier-Stokes equations were developed. In PFV method, the mass fluxes of across the cell faces of the control volume (CV) were expanded into power series of the grid spacing and the coefficients of the power series were determined by means of the conservation equation itself. The UPFV and CPFV scheme respectively uses the same nodes and expressions as those of the normal first-order upwind and second-order central scheme, which is apt to programming. The results of numerical experiments about the flow in a lid-driven cavity and the problem of transport of a scalar quantity in a known velocity field show that compared to the first-order UFV and second-order CFV schemes, upwind PFV scheme is higher accuracy and resolution, especially better robustness. The numerical computation to flow in a lid-driven cavity shows that the under-relaxation factor can be arbitrarily selected ranging from 0.3 to 0. 8 and convergence perform excellent with Reynolds number variation from 102 to 104.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
[EN] In this work, we present a new model for a dense disparity estimation and the 3-D geometry reconstruction using a color image stereo pair. First, we present a brief introduction to the 3-D Geometry of a camera system. Next, we propose a new model for the disparity estimation based on an energy functional. We look for the local minima of the energy using the associate Euler-Langrage partial differential equations. This model is a generalization to color image of the model developed in, with some changes in the strategy to avoid the irrelevant local minima. We present some numerical experiences of 3-D reconstruction, using this method some real stereo pairs.
Resumo:
Недю Попиванов, Цветан Христов - Изследвани са някои тримерни аналози на задачата на Дарбу в равнината. През 1952 М. Протер формулира нови тримерни гранични задачи както за клас слабо хиперболични уравнения, така и за някои хиперболично-елиптични уравнения. За разлика от коректността на двумерната задача на Дарбу, новите задачи са некоректни. За слабо хиперболични уравнения, съдържащи младши членове, ние намираме достатъчни условия както за съществуване и единственост на обобщени решения с изолирана степенна особеност, така и за единственост на квази-регулярни решения на задачата на Протер.
Resumo:
Недю Иванов Попиванов, Алексей Йорданов Николов - През 1952 г. М. Протър формулира нови гранични задачи за вълновото уравнение, които са тримерни аналози на задачите на Дарбу в равнината. Задачите са разгледани в тримерна област, ограничена от две характеристични конуса и равнина. Сега, след като са минали повече от 50 години, е добре известно, че за безброй гладки функции в дясната страна на уравнението тези задачи нямат класически решения, а обобщеното решение има силна степенна особеност във върха на характеристичния конус, която е изолирана и не се разпространява по конуса. Тук ние разглеждаме трета гранична задача за вълновото уравнение с младши членове и дясна страна във формата на тригонометричен полином. Дадена е по-нова от досега известната априорна оценка за максимално възможната особеност на решенията на тази задача. Оказва се, че при по-общото уравнение с младши членове възможната сингулярност е от същия ред като при чисто вълновото уравнение.
Resumo:
Studies have examined the associations between cancers and circulating 25-hydroxyvitamin D [25(OH)D], but little is known about the impact of different laboratory practices on 25(OH)D concentrations. We examined the potential impact of delayed blood centrifuging, choice of collection tube, and type of assay on 25(OH)D concentrations. Blood samples from 20 healthy volunteers underwent alternative laboratory procedures: four centrifuging times (2, 24, 72, and 96 h after blood draw); three types of collection tubes (red top serum tube, two different plasma anticoagulant tubes containing heparin or EDTA); and two types of assays (DiaSorin radioimmunoassay [RIA] and chemiluminescence immunoassay [CLIA/LIAISON®]). Log-transformed 25(OH)D concentrations were analyzed using the generalized estimating equations (GEE) linear regression models. We found no difference in 25(OH)D concentrations by centrifuging times or type of assay. There was some indication of a difference in 25(OH)D concentrations by tube type in CLIA/LIAISON®-assayed samples, with concentrations in heparinized plasma (geometric mean, 16.1 ng ml−1) higher than those in serum (geometric mean, 15.3 ng ml−1) (p = 0.01), but the difference was significant only after substantial centrifuging delays (96 h). Our study suggests no necessity for requiring immediate processing of blood samples after collection or for the choice of a tube type or assay.
Resumo:
Recently, some authors have considered a new diffusion model–space and time fractional Bloch-Torrey equation (ST-FBTE). Magin et al. (2008) have derived analytical solutions with fractional order dynamics in space (i.e., _ = 1, β an arbitrary real number, 1 < β ≤ 2) and time (i.e., 0 < α < 1, and β = 2), respectively. Yu et al. (2011) have derived an analytical solution and an effective implicit numerical method for solving ST-FBTEs, and also discussed the stability and convergence of the implicit numerical method. However, due to the computational overheads necessary to perform the simulations for nuclear magnetic resonance (NMR) in three dimensions, they present a study based on a two-dimensional example to confirm their theoretical analysis. Alternating direction implicit (ADI) schemes have been proposed for the numerical simulations of classic differential equations. The ADI schemes will reduce a multidimensional problem to a series of independent one-dimensional problems and are thus computationally efficient. In this paper, we consider the numerical solution of a ST-FBTE on a finite domain. The time and space derivatives in the ST-FBTE are replaced by the Caputo and the sequential Riesz fractional derivatives, respectively. A fractional alternating direction implicit scheme (FADIS) for the ST-FBTE in 3-D is proposed. Stability and convergence properties of the FADIS are discussed. Finally, some numerical results for ST-FBTE are given.
Resumo:
The numerical solution of stochastic differential equations (SDEs) has been focused recently on the development of numerical methods with good stability and order properties. These numerical implementations have been made with fixed stepsize, but there are many situations when a fixed stepsize is not appropriate. In the numerical solution of ordinary differential equations, much work has been carried out on developing robust implementation techniques using variable stepsize. It has been necessary, in the deterministic case, to consider the "best" choice for an initial stepsize, as well as developing effective strategies for stepsize control-the same, of course, must be carried out in the stochastic case. In this paper, proportional integral (PI) control is applied to a variable stepsize implementation of an embedded pair of stochastic Runge-Kutta methods used to obtain numerical solutions of nonstiff SDEs. For stiff SDEs, the embedded pair of the balanced Milstein and balanced implicit method is implemented in variable stepsize mode using a predictive controller for the stepsize change. The extension of these stepsize controllers from a digital filter theory point of view via PI with derivative (PID) control will also be implemented. The implementations show the improvement in efficiency that can be attained when using these control theory approaches compared with the regular stepsize change strategy.
Resumo:
A newly developed computational approach is proposed in the paper for the analysis of multiple crack problems based on the eigen crack opening displacement (COD) boundary integral equations. The eigen COD particularly refers to a crack in an infinite domain under fictitious traction acting on the crack surface. With the concept of eigen COD, the multiple cracks in great number can be solved by using the conventional displacement discontinuity boundary integral equations in an iterative fashion with a small size of system matrix to determine all the unknown CODs step by step. To deal with the interactions among cracks for multiple crack problems, all cracks in the problem are divided into two groups, namely the adjacent group and the far-field group, according to the distance to the current crack in consideration. The adjacent group contains cracks with relatively small distances but strong effects to the current crack, while the others, the cracks of far-field group are composed of those with relatively large distances. Correspondingly, the eigen COD of the current crack is computed in two parts. The first part is computed by using the fictitious tractions of adjacent cracks via the local Eshelby matrix derived from the traction boundary integral equations in discretized form, while the second part is computed by using those of far-field cracks so that the high computational efficiency can be achieved in the proposed approach. The numerical results of the proposed approach are compared not only with those using the dual boundary integral equations (D-BIE) and the BIE with numerical Green's functions (NGF) but also with those of the analytical solutions in literature. The effectiveness and the efficiency of the proposed approach is verified. Numerical examples are provided for the stress intensity factors of cracks, up to several thousands in number, in both the finite and infinite plates.
Resumo:
There has been considerable recent work on the development of energy conserving one-step methods that are not symplectic. Here we extend these ideas to stochastic Hamiltonian problems with additive noise and show that there are classes of Runge-Kutta methods that are very effective in preserving the expectation of the Hamiltonian, but care has to be taken in how the Wiener increments are sampled at each timestep. Some numerical simulations illustrate the performance of these methods.