9 resultados para Hélicase
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
La sténose valvulaire aortique (SVA) est une pathologie associée au vieillissement et aux facteurs de risque cardiovasculaire. Afin d’étudier la SVA et d’explorer de nouvelles thérapies, plusieurs modèles animaux ont été récemment développés, mais la plupart de ces modèles ciblent les mécanismes de développement de la SVA reliés à l’hypercholestérolémie. Le syndrome de Werner (WS) est une maladie caractérisée par un vieillissement prématuré. Récemment, il a été découvert que des souris mutantes ayant une délétion du domaine hélicase du gène Werner, responsable du WS, démontraient un profile hémodynamique typique de la SVA. De ce fait, nous avons émis l’hypothèse que ces souris pourraient développer une SVA plus rapidement que des souris de type sauvage. Nous avons donc étudié les effets cette mutation chez des souris WrnΔhel/Δhel, en comparant le taux de progression d’une SVA entre des souris WrnΔhel/Δhel (WrnΔhel) et des souris de type sauvage comme groupe contrôle. À la suite d’une diète riche en sucre et en gras sur une période de 24 semaines, les souris WrnΔhel ont démontré une diminution plus prononcée de leur aire de valve aortique (mesures échocardiographiques) que les souris contrôles, supportée par les analyses histologiques concernant la fibrose des valves aortiques. Les souris n’ont toutefois développé aucun signe évident d’athérosclérose comme l’infiltration de lipides ou l’inflammation, bien que certaines caractéristiques liées à la dysfonction endothéliale semblent être augmentées chez les souris WrnΔhel. D’autres mesures échocardiographiques indiquant une SVA, comme une hypertrophie du ventricule gauche dans le groupe WrnΔhel, ont été obtenues. Nous avons aussi observé des indices de vieillissement plus marqués quant aux analyses sanguines et de la moelle osseuse des souris WrnΔhel en comparaison avec les souris contrôles. Par conséquent, ce modèle expérimental de vieillissement pourrait être utilisé pour les études futures sur la SVA sans les principaux effets athérogéniques des autres modèles expérimentaux.
Resumo:
Les papillomavirus sont des virus à ADN qui infectent la peau et les muqueuses. Ils causent des verrues et peuvent aussi mener au développement de cancers, dont le cancer du col de l’utérus. La réplication de leur génome nécessite deux protéines virales : l’hélicase E1 et le facteur de transcription E2, qui recrute E1 à l’origine de réplication virale. Pour faciliter l’étude de la réplication du génome viral, un essai quantitatif et à haut débit basé sur l’expression de la luciférase a été développé. Parallèlement, un domaine de transactivation a été identifié dans la région régulatrice N-terminale de la protéine E1. La caractérisation de ce domaine a montré que son intégrité est importante pour la réplication de l’ADN. Cette étude suggère que le domaine de transactivation de E1 est une région protéique intrinsèquement désordonnée qui permet la régulation de la réplication du génome viral par son interaction avec diverses protéines.
Resumo:
Les virus du papillome humain (VPH) sont de petits virus à ADN double brin infectant les épithéliums de la peau et des muqueuses. La réplication nécessaire au maintien de leur génome dans les cellules infectées dépend des protéines virales E1 et E2. Au cours de la réplication, E1 est recrutée à l’origine de réplication par E2 afin d’être assemblée en doubles hexamères capables de dérouler l’ADN. E1 contient un domaine C-terminal responsable de l’activité ATPase/hélicase, un domaine central de liaison à l’origine et une région N-terminale régulant la réplication in vivo. Cette région contient des signaux de localisation et d’export nucléaire qui modulent le transport intracellulaire de E1. Chez le virus du papillome bovin (VPB), il a été proposé que ce transport est régulé par la sumoylation de E1. Finalement, la région N-terminale de E1 contient un motif de liaison aux cyclines permettant son interaction avec la cycline E/A-Cdk2. La phosphorylation de E1 par cette dernière régule différemment l’export nucléaire des protéines E1 du VPB et du VPH. Dans la première partie de cette étude, nous avons démontré que bien que la protéine E1 des VPH interagit avec Ubc9, l’enzyme de conjugaison de la voie de sumoylation, cette voie n’est pas requise pour son accumulation au noyau. Dans la seconde partie, nous avons déterminé que l’accumulation nucléaire de E1 est plutôt régulée pas sa phosphorylation. En fait, nous avons démontré que l’export nucléaire de E1 est inhibé par la phosphorylation de sérines conservées de la région N-terminale de E1 par Cdk2. Puis, nous avons établi que l’export nucléaire de E1 n’est pas nécessaire à l’amplification du génome dans les kératinocytes différenciés mais qu’il est requis pour le maintien du génome dans les kératinocytes non différenciés. En particulier, nous avons découvert que l’accumulation nucléaire de E1 inhibe la prolifération cellulaire en induisant un arrêt du cycle cellulaire en phase S et que cet effet anti-prolifératif est contrecarrée par l’export de E1 au cytoplasme. Dans la troisième partie de cette étude, nous avons démontré que l’arrêt cellulaire induit par E1 dépend de sa liaison à l’ADN et à l’ATP, et qu’il est accompagné par l’activation de la voie de réponse aux dommages à l’ADN dépendante de ATM (Ataxia Telangiectasia Mutated). Ces deux événements semblent toutefois distincts puisque la formation d’un complexe E1-E2 réduit l’activation de la voie de réponse aux dommages par E1 sans toutefois prévenir l’arrêt de cycle cellulaire. Finalement, nous avons démontré que la réplication transitoire de l’ADN viral peut avoir lieu dans des cellules arrêtées en phase S, indépendamment de l’activation de la voie de réponse aux dommages à l’ADN et de la kinase ATM. Globalement, nos résultats démontrent que l’export nucléaire de E1 est régulé par sa phosphorylation et non par sa sumoylation. Ils démontrent également que l’export nucléaire de E1 est essentiel au maintien du génome dans les kératinocytes, possiblement parce qu’il prévient l’inhibition de la prolifération cellulaire et l’activation de la voie de réponse aux dommages à l’ADN en limitant l’accumulation de E1 au noyau.
Resumo:
La réparation de l’ADN par excision des nucléotides (NER) est un mécanisme capable de retirer une large variété de lésions causant une distorsion de la double hélice, comme celles causées par les rayons ultraviolets (UV). Comme toutes les voies de réparation de l’ADN, la NER contribue à la prévention de la carcinogénèse en prévenant la mutation de l’ADN. Lors de ce processus, il y a d’abord reconnaissance de la lésion par la protéine XPC/Rad4 (humain/levure) qui recrute ensuite TFIIH. Ce complexe déroule l’ADN par son activité hélicase et recrute l’endonucléase XPG/Rad2 ainsi que d’autres protéines nécessaires à l’excision de l’ADN. Lors de son arrivée au site de lésion, XPG/Rad2 déplace XPC/Rad4. TFIIH agit également lors de la transcription de l’ADN, entre autres par son activité hélicase. Outre cette similarité de la présence de TFIIH lors de la transcription et la réparation, il est possible de se demander en quoi les deux voies sont similaires. Nous nous sommes donc intéressés aux interactions impliquant TFIIH et la machinerie de réparation de l’ADN. Nous avons donc entrepris une caractérisation structurale et fonctionnelle de ces interactions. Nous avons découvert que Rad2 et Rad4 possèdent un motif d’interaction en nous basant sur d’autres interactions de la sous-unité Tfb1 de TFIIH. Par calorimétrie à titrage isotherme, nous avons observé que les segments de ces deux protéines contenant ce motif interagissent avec une grande affinité au domaine PH de Tfb1. Le site de liaison de ces segments sur Tfb1PH est très semblable au site de liaison du domaine de transactivation de p53 et au domaine carboxy-terminal de TFIIEα avec Tfb1PH, tel que démontré par résonance magnétique nucléaire (RMN). De plus, tous ces segments peuvent faire compétition les uns aux autres pour la liaison à Tfb1PH. Nous avons aussi démontré in vivo chez la levure qu’une délétion de Tfb1PH crée une sensibilité aux radiations UV. De plus, la délétion de multiples segments de Rad2 et Rad4, dont les segments d’interaction à Tfb1PH, est nécessaire pour voir une sensibilité aux rayons UV. Ainsi, de multiples interactions sont impliquées dans la liaison de Rad2 et Rad4 à TFIIH. Finalement, les structures des complexes Rad2-Tfb1PH et Rad4-Tfb1PH ont été résolues par RMN. Ces structures sont identiques entre elles et impliquent des résidus hydrophobes interagissant avec des cavités peu profondes de Tfb1PH. Ces structures sont très semblables à la structure de TFIIEα-p62PH. Ces découvertes fournissent ainsi un lien important entre la transcription et la réparation de l’ADN. De plus, elles permettent d’émettre un modèle du mécanisme de déplacement de XPC/Rad4 par XPG/Rad2 au site de dommage à l’ADN. Ces connaissances aident à mieux comprendre les mécanismes de maintient de la stabilité génomique et peuvent ainsi mener à développer de nouvelles thérapies contre le cancer.
Resumo:
Le virus du papillome humain (VPH) est l’agent étiologique du cancer du col utérin, ainsi que d’autre néoplasies anogénitales et des voies aérodigestives supérieures. La réplication de son génome d’ADN double brin est assurée par les protéines virales E1 et E2, de concert avec la machinerie cellulaire de réplication. E1 assure le déroulement de l’ADN en aval de la fourche de réplication, grâce à son activité hélicase, et orchestre la duplication du génome viral. Nos travaux antérieurs ont démontré que le domaine N-terminal de E1 contient un motif de liaison à la protéine cellulaire p80/UAF1 qui est hautement conservé chez tous les VPH anogénitaux. L’intégrité de ce motif est essentielle au maintien de l’épisome viral. Les travaux présentés dans cette thèse ont d’abord déterminé que le motif de liaison à UAF1 n’est pas requis pour l’assemblage du pré-réplisome viral, mais important pour la réplication subséquente de l’ADN du VPH. Nous avons constaté qu’en présence de E1 et E2, UAF1 est relocalisé dans des foyers nucléaires typiques de sites de réplication du virus et qu’en outre, UAF1 s’associe physiquement à l’origine de réplication du VPH. Nous avons aussi déterminé que l’inhibition du recrutement de UAF1 par la surexpression d’un peptide dérivé de E1 (N40) contenant le motif de liaison à UAF1 réduit la réplication de l’ADN viral. Cette observation soutient le modèle selon lequel UAF1 est relocalisé par E1 au réplisome pour promouvoir la réplication de l’ADN viral. UAF1 est une protéine à domaine WD40 n’encodant aucune activité enzymatique et présumée exploiter des interactions protéine-protéine pour accomplir sa fonction. Nous avons donc investigué les protéines associées à UAF1 dans des cellules du col utérin et avons détecté des interactions avec les enzymes de déubiquitination USP1, USP12 et USP46, ainsi qu’avec la phosphatase PHLPP1. Nous avons établi que E1 forme un complexe ternaire avec UAF1 et n’importe laquelle des USP associés : USP1, USP12 ou USP46. Ces USP sont relocalisés au noyau par E1 et s’associent à l’ADN viral. De plus, l’activité enzymatique des USP est essentielle à la réplication optimale du génome viral. Au contraire, PHLPP1 ne forme pas de complexe avec E1, puisque leurs interactions respectives avec UAF1 sont mutuellement exclusives. PHLPP1 contient un peptide de liaison à UAF1 homologue à celui de E1. Ce peptide dérivé de PHLPP1 (P1) interagit avec le complexe UAF1-USP et, similairement au peptide N40, antagonise l’interaction E1-UAF1. Incidemment, la surexpression du peptide P1 inhibe la réplication de l’ADN viral. La génération de protéines chimériques entre P1 et des variants de E1 (E1Δ) défectifs pour l’interaction avec UAF1 restaure la capacité de E1Δ à interagir avec UAF1 et USP46, ainsi qu’à relocaliser UAF1 dans les foyers nucléaires contenant E1 et E2. Ce recrutement artificiel de UAF1 et des USP promeut la réplication de l’ADN viral, un phénotype dépendant de l’activité déubiquitinase du complexe. Globalement, nos travaux suggèrent que la protéine E1 du VPH interagit avec UAF1 afin de recruter au réplisome un complexe de déubiquitination dont l’activité est importante pour la réplication de l’ADN viral.
Resumo:
La déficience intellectuelle (DI) définit un groupe de conditions génétiquement hétérogènes caractérisées par l’apparition de troubles cognitifs précoces chez l’enfant. Elle affecte 1-3% de la population dans les pays industrialisés. La prévalence de la DI est beaucoup plus élevée ailleurs dans le monde, en raison de facteurs sociodémographiques comme le manque de ressources dans le système de santé, la pauvreté et la consanguinité. Des facteurs non-génétiques sont mis en cause dans l’étiologie de la DI ; on estime qu’environ 25% des cas de DI sont d’origine génétique. Traditionnellement, les bases moléculaires de la DI ont été investiguées par des analyses cytogénétiques, les approches de cartographie génétique et le séquençage de gènes candidats ; ces techniques de génétiques classiques sont encore mises à rude épreuve dans l’analyse de maladies complexes comme la DI. La DI liée à l’X a été particulièrement étudiée, avec plus d’une centaine de gènes identifiés uniquement sur le chromosome X. Des mutations hétérozygotes composites sont mises en évidence dans la DI autosomique, dans le contexte d’unions non-consanguines. L’occurrence de ce type de mutations est rare, chez des individus non-apparentés, de sorte que les mutations dominantes de novo sont plus courantes. Des mutations homozygotes sont attendues dans les populations consanguines ou marquées par un effet fondateur. En fait, les bases moléculaires de la DI autosomique ont été presqu’exclusivement étudiées dans le contexte de populations avec des forts taux de consanguinité. L’origine de la DI demeure encore inconnue dans environ 60 % des cas diagnostiqués. En l’absence de facteurs environnementaux associés à la DI chez ces individus, il est possible d’envisager que des facteurs génétiques non identifiés entrent en jeu dans ces cas de DI inexpliqués. Dans ce projet de recherche, nous voulions explorer l’origine génétique de la DI, dans vingt familles, où une transmission de la maladie selon un mode autosomique récessif est suspectée. Nous avons mis de l’avant les techniques de séquençage de nouvelle génération, afin de mettre en évidence les déterminants génétiques de la DI, à l’échelle du génome humain. En fait, nous avons priorisé la capture et le séquençage de l’exome; soient la totalité des régions codantes du génome humain et leurs sites d’épissage flanquants. Dans nos analyses, nous avons ciblé les variants qui ne sont pas rapportés trop fréquemment dans différentes bases de données d’individus contrôles, ces mutations rares cadrent mieux avec une condition comme la DI. Nous avons porté une attention particulière aux mutations autosomiques récessives (homozygotes et hétérozygotes composites) ; nous avons confirmé que ces mutations ségréguent avec une transmission récessive dans la famille à l’étude. Nous avons identifié des mutations dans des gènes pouvant être à l’origine de la DI, dans certaines des familles analysées ; nous avons validé biologiquement l'impact fonctionnel des mutations dans ces gènes candidats, afin de confirmer leur implication dans la pathophysiologie de la DI. Nous avons élucidé les bases moléculaires de la DI dans huit des familles analysées. Nous avons identifié le second cas de patients avec syndrome de cassure chromosomique de Varsovie, caractérisé par des dysfonctions de l’ARN hélicase DDX11. Nous avons montré qu’une perte de l’activité de TBC1D7, une des sous-unités régulatrice du complexe TSC1-TSC2, est à l’origine de la pathologie dans une famille avec DI et mégalencéphalie. Nous avons mis en évidence des mutations pathogéniques dans le gène ASNS, codant pour l’Asparagine synthétase, chez des patients présentant une microcéphalie congénitale et une forme progressive d’encéphalopathie. Nous avons montré que des dysfonctions dans la protéine mitochondriale MAGMAS sont mises en cause dans une condition caractérisée par un retard prononcé dans le développement associé à une forme sévère de dysplasie squelettique. Nous avons identifié une mutation tronquant dans SPTBN2, codant pour la protéine spinocerebellar ataxia 5, dans une famille avec DI et ataxie cérébelleuse. Nous avons également mis en évidence une mutation dans PIGN, un gène impliqué dans la voie de biosynthèse des ancres de glycosylphosphatidylinositol , pouvant être à l’origine de la maladie chez des individus avec épilepsie et hypotonie. Par ailleurs, nous avons identifié une mutation - perte de fonction dans CLPB, codant pour une protéine chaperonne mitochondriale, dans une famille avec encéphalopathie néonatale, hyperekplexie et acidurie 3-méthylglutaconique. Le potentiel diagnostic des techniques de séquençage de nouvelle génération est indéniable ; ces technologies vont révolutionner l’univers de la génétique moléculaire, en permettant d’explorer les bases génétiques des maladies complexes comme la DI.
Resumo:
Les protéines MCM (minichromosome maintenance) forment un complexe hétérohexamérique composé des protéines MCM2 à MCM7 qui possède une activité hélicase nécessaire lors de la réplication de l’ADN. Ce complexe est la cible des protéines ATM et ATR, kinases responsables de l’initiation de la réponse cellulaires aux dommages à l’ADN, pour permettre l’arrêt de la réplication lors de la détection de cassure double brin. De plus, les MCM permettent le remodelage de la chromatine par leur activité hélicase mais aussi par leur association avec une chaperone d’histone la protéine ASF1. Toutefois, la majorité des complexes MCM ne co-localisent pas avec les origines de réplication. De plus, la quantité des protéines MCM dans la cellule est nettement supérieure à la quantité requise lors de la réplication. Ces deux faits laissent présager que ce complexe hélicase pourrait jouer un second rôle. Des études effectuées au laboratoire ont démontré une augmentation de la fixation à la chromatine des protéines MCM suite au traitement avec l’étoposide, un inhibiteur de la topoisomérase II qui cause des cassures double brin. L’étude des interactions de la protéine MCM2 par spectrométrie de masse ainsi que par immunobuvardage ont démontré une augmentation de l’interaction entre la protéine MCM2 et ASF1 suite aux dommages. Ceci suggère que les protéines MCM pourraient être impliquées dans les mécanismes de réparation de l’ADN. La nature de l’interaction entre la protéine MCM2 et ASF1 a été déterminée in vitro par des immunobuvardages de type Far western et des Dot blot avec des mutants de la protéine MCM2. Des cellules U2OS-Flp-in ont été utilisées pour générer des lignées stables exprimants les protéines MCM2 à MCM7 avec une étiquette GFP ou fusionnées avec une biotine-ligase (BirA). Les cellules ont été cultivées dans du milieu SILAC et des immunoprécipitations ont été effectuées sur des cellules contrôles (R0K0), des cellules qui expriment MCM-GFP ou BirA (R6K4) non-traitées et des cellules qui expriment MCM-GFP ou BirA traitées à l’étoposide (R10K8). Les immunoprécipitations ont été analysés au spectromètre de masse pour déterminer la modulation des interactions avant et après dommages à l’ADN. Les études d’interactions in vitro ont permis d’identifier que l’interaction entre la protéine MCM2 et ASF1 se situe entre les acides aminés 81-162 sur la protéine MCM2. L’approche de spectrométrie de masse a permis d’identifier plusieurs protéines liant le complexe MCM qui sont impliquées non seulement dans la réplication de l’ADN mais aussi dans le remodelage de la chromatine. De plus, certains de ces nouveaux partenaires augmentent leur interaction avec le complexe suite à l’induction de dommages. Ces résultats suggèrent que les protéines MCM jouent un rôle dans la réorganisation de la chromatine dans les mécanismes de réparation de l’ADN.