1000 resultados para Gymnodinium Microadriaticum Freudenthal
Resumo:
The specific identity of endosymbiotic dinoflagellates (Symbiodinium spp.) from most zooxanthellate corals is unknown. In a survey of symbiotic cnidarians from the southern Great Barrier Reef (GBR), 23 symbiont types were identified from 86 host species representing 40 genera. A majority (>85%) of these symbionts belong to a single phylogenetic clade or subgenus (C) composed of closely related (as assessed by sequence data from the internal transcribed spacer region and the ribosomal large subunit gene), yet ecologically and physiologically distinct, types. A few prevalent symbiont types, or generalists, dominate the coral community of the southern GBR, whereas many rare and/or specific symbionts, or specialists, are found uniquely within certain host taxa. The comparison of symbiont diversity between southern GBR and Caribbean reefs shows an inverse relationship between coral diversity and symbiont diversity, perhaps as a consequence of more-rapid diversification of Caribbean symbionts. Among clade C types, generalists C1 and C3 are common to both Caribbean and southern GBR symbiont assemblages, whereas the rest are regionally endemic. Possibly because of environmental changes in the Caribbean after geographic isolation through the Quaternary period, a high proportion of Caribbean fauna associate with symbiont taxa from two other distantly related Symbiodinium clades (A and B) that rarely occur in Pacific hosts. The resilience of Porites spp. and the resistance of Montipora digitata to thermal stress and bleaching are partially explained by their association with a thermally tolerant symbiont type, whereas the indiscriminant widespread bleaching and death among certain Pacific corals, during El Nino Southern Oscillation events, are influenced by associations with symbionts possessing higher sensitivity to thermal stress.
Resumo:
Coral reefs are the most diverse marine ecosystem and embrace possibly millions of plant, animal and protist species. Mutualistic symbioses are a fundamental feature of coral reefs that have been used to explain their structure, biodiversity and existence. Complex inter-relationships between hosts, habitats and symbionts belie closely coupled nutrient and community dynamics that create the circumstances for something from nothing (or the oasis in a nutrient desert). The flip side of these dynamics is a close dependency between species, which results in a series of non-linear relationships as conditions change. These responses are being highlighted as anthropogenic influences increase across the world's tropical and subtropical coastlines. Caribbean as well as Indo-Pacific coral populations are now in a serious decline in many parts of the world. This has resulted in a significant reorganization of how coral reef ecosystems function. Among the spectra of changes brought about by humans is rapid climate change. Mass coral bleaching - the loss of the dinoflagellate symbionts from reef-building corals - and mortality has affected the world's coral reefs with increasing frequency and intensity since the late 1970s. Mass bleaching events, which often cover thousands of square kilometres of coral reefs, are triggered by small increases (+1-3degreesC) in water temperature. These increases in sea temperature are often seen during warm phase weather conditions (e.g. ENSO) and are increasing in size and magnitude. The loss of living coral cover (e.g. 16% globally in 1998, an exceptionally warm year) is resulting in an as yet unspecified reduction in the abundance of a myriad of other species. Projections from general circulation models (GCM) used to project changes in global temperature indicate that conditions even under the mildest greenhouse gas emission scenarios may exceed the thermal tolerances of most reef-building coral communities. Research must now explore key issues such as the extent to which the thermal tolerances of corals and their symbionts are dynamic if bleaching and disease are linked; how the loss of high densities of reef-building coral will affect other dependent species; and, how the loss of coral populations will affect the millions of people globally who depend on coral reefs for their daily survival.
Resumo:
Marine invertebrates representing at least five phyla are symbiotic with dinoflagellates from the genus Symbiodinium. This group of single-celled protists was once considered to be a single pandemic species, Symbiodinium microadriaticum. Molecular investigations over the past 25 years have revealed, however, that Symbiodinium is a diverse group of organisms with at least eight (A-H) divergent clades that in turn contain multiple molecular subclade types. The diversity within this genus may subsequently determine the response of corals to normal and stressful conditions, leading to the proposal that the symbiosis may impart unusually rapid adaptation to environmental change by the metazoan host. These questions have added importance due to the critical challenges that corals and the reefs they build face as a consequence of current rapid climate change. This review outlines our current understanding of the diverse genus Symbiodinium and explores the ability of this genus and its symbioses to adapt to rapid environmental change. (c) 2006 Rubel Foundation, ETH Zurich. Published by Elsevier GmbH. All rights reserved.
Resumo:
This report details a reliable and efficient RNA extraction protocol for the symbiotic dinoflagellate Symbiodinium microadriaticum Freudenthal (Gymnodiniales, Dinophyceae). The method typically gives yields of 500 mu g total RNA from 0.4 g wet weight of algae, and, in comparison to current protocols, it is technically simple and less time consuming. This method isolates high-quality, intact RNA from in vine cultured as well as host-isolated cells, as demonstrated by spectrophotometry, gel electrophoresis, and northern analysis. The total RNA obtained was suitable for reverse transcription and PCR amplification of Symbiodinium cDNAs. We have successfully applied our method to isolate total RNA from a different dinoflagellate, Amphidinium carterae Hulburt (Gymnodiniales, Dinophyceae), found in symbiotic association with marine invertebrates.
Resumo:
The effects of exposure to the type species for Karlodinium veneficum (PLY # 103) on immune function and histopathology in the blue mussel Mytilus edulis were investigated. Mussels from Whitsand Bay, Cornwall (UK) were exposed to K. veneficum (PLY # 103) for 3 and 6 days. Assays for immune function included total and differential cells counts, phagocytosis and release of extra cellular reactive oxygen species. Histology was carried out on digestive gland and mantle tissues. The toxin cell quota for K. veneficum (PLY #103) was measured by liquid chromatography-mass spectrometry detecting two separable toxins KvTx1 (11.6 ± 5.4 ng/ml) and KvTx2 (47.7 ± 4.2 ng/ml). There were significant effects of K. veneficum exposure with increasing phagocytosis and release of reactive oxygen species following 6 days exposure. There were no significant effects on total cell counts. However, differential cell counts did show significant effects after 3 days exposure to the toxic alga. All mussels produced faeces but not pseudofaeces indicating that algae were not rejected prior to ingestion. Digestive glands showed ingestion of the algae and hemocyte infiltration after 3 days of exposure, whereas mantle tissue did not show differences between treatments. As the effects of K. veneficum were not observed in the mantle tissue it can be hypothesized that the algal concentration was not high enough, or exposure long enough, to affect all the tissues. Despite being in culture for more than 50 years the original K. veneficum isolate obtained by Mary Parke still showed toxic effects on mussels.
Resumo:
Aaron Freimann
Resumo:
J. S.
Resumo:
H. C.
Resumo:
Scan von Monochrom-Mikroform
Resumo:
Scan von Monochrom-Mikroform
Resumo:
-ld.
Resumo:
Max Bernheimer
Resumo:
Julian Landsberger
Resumo:
Scan von Monochrom-Mikroform
Le-sana tova tikatevu [Neujahrsgruß] [Illustration] : Aus der Kunstgewerbestube Freudenthal, Breslau
Resumo:
Scan von Monochrom-Mikroform