920 resultados para Gut passage
Resumo:
Between 20.5 and 93.6 % of the subitaneous eggs of 6 species of egg-carrying copepods passed undigested through the digestive tracts of larval and early postlarval turbot Scophthalmus maximus. Viability of the eggs of Eurytemora affinis, E. velox and Euterpina acutifrons remained high on egestion (67.0 to 91.7 %), Pseudocalanus elongatus and Oncaea venusta eggs had low viability (1.1 to 1.5 %), while all Corycaeus anglicus eggs were rendered inviable. The indigestibility of the eggs denies the turbot larvae a potentially valuable food resource, while retention of high egg viability in certain species reduces the effect of predation.
Resumo:
Earthworms inhabiting arsenic contaminated soils may accelerate the leaching of As into surface and ground waters. We carried out three experiments to determine the impact of passage of As contaminated soil (1150 mgAs kg−1) through the gut of the earthworm Lumbricus terrestris on the mobility and speciation of As and the effects of earthworm mucus on As mobility. The concentration of water soluble As in soil increased (from 1.6 to 18 mg kg−1) after passage through the earthworm gut. Casts that were aged for 56 days still contained more than nine times greater water soluble As than bulk earthworm inhabited soil. Changes were due to increases in As(V) mobility, with no change in As(III). Dilute mucus extracts reduced As mobility through the formation of As-amino acid-iron oxide ternary complexes. More concentrated mucus extracts increased As mobility. These changes, together with those due to the passage through the gut, were due to increases in pH, phosphate and soluble organic carbon. The mobilisation of As from contaminated soils in the environment by cast production and mucus secretion may allow for accelerated leaching or uptake into biota which is underestimated when bulk soil samples are analysed and the influence of soil biota ignored.
Gastropod Seed Dispersal: An Invasive Slug Destroys Far More Seeds in Its Gut than Native Gastropods
Resumo:
Seed dispersal is one of the most important mechanisms shaping biodiversity, and animals are one of the key dispersal vectors. Animal seed dispersal can directly or indirectly be altered by invasive organisms through the establishment of new or the disruption of existing seed dispersal interactions. So far it is known for a few gastropod species that they ingest and defecate viable plant seeds and consequently act as seed dispersers, referred to as gastropodochory. In a multi-species experiment, consisting of five different plant species and four different gastropod species, we tested with a fully crossed design whether gastropodochory is a general mechanism across native gastropod species, and whether it is altered by the invasive alien slug species Arion lusitanicus. Specifically, we hypothesized that a) native gastropod species consume the seeds from all tested plant species in equal numbers (have no preference), b) the voracious invasive alien slug A. lusitanicus – similarly to its herbivore behaviour – consumes a higher amount of seeds than native gastropods, and that c) seed viability is equal among different gastropod species after gut passage. As expected all tested gastropod species consumed all tested plant species. Against our expectation there was a difference in the amount of consumed seeds, with the largest and native mollusk Helix pomatia consuming most seeds, followed by the invasive slug and the other gastropods. Seed damage and germination rates did not differ after gut passage through different native species, but seed damage was significantly higher after gut passage through the invasive slug A. lusitanicus, and their germination rates were significantly reduced.
Resumo:
Dispersal is a significant determinant of the pattern and process of invasions; however, weed dispersal distances are rarely described and descriptions of dispersal kernels are completely lacking for vertebrate-dispersed weeds. Here, we describe dispersal kernels generated by a native disperser, the endangered southern cassowary (Casuarius casuarius, L.) for an invasive, tropical rainforest plant, pond apple (Annona glabra, L.). Pond apple is primarily water-dispersed and is managed as such. We consider whether cassowary dispersal, as a numerically subordinate dispersal mode, provides an additional dispersal service that may modify the invasion process. In infested areas, pond apple seed was common in cassowary dung. Gut passage had no effect on the probability of single seed germination but deposition in clumps or as whole fruits reduced the probability of germination below that of single seeds. Gut passage times ranged from 65 to 1675 min. Combined with cassowary movement data, this resulted in estimated dispersal distances of 12.5-5212 m, with a median distance of 387 m (quartile range 112-787 m). Native frugivores can be effective dispersers of weeds in rainforest and even terrestrial dispersers can provide long-distance dispersal. Importantly, though pond apple might be expected to be almost entirely dispersed downstream and along the margins of aquatic and marine habitats, cassowaries provide dispersal upstream and between drainages, leading to novel dispersal outcomes. Even through the provision of small quantities of novel dispersal outcomes, subordinate dispersal modes can play a significant role in determining invasion pattern and influence the ultimate success of control programs by providing dispersal to locations unattainable via the primary mode.
Resumo:
We investigated aspects of the reproductive ecology of Ochna serrulata (Hochst.) Walp., an invasive plant in eastern Australia. O. serrulata drupes were similar in size to fleshy fruits of other local invasive plants, but showed some distinct differences in quality, with a very high pulp lipid content (32.8% of dry weight), and little sugar and water. Seeds were dispersed by figbirds, Sphecotheres viridis Vieillot, a locally abundant frugivore, and comprised between 10 and 50% of all non-Ficus spp. fruit consumed during October and November. The rate of removal of O. serrulata drupes was greater in bushland than suburban habitats, indicating that control in bushland habitats should be a priority, but also that suburban habitats are likely to act as significant seed sources for reinvasion of bushland. Germination occurred under all seed-processing treatments (with and without pulp, and figbird gut passage), suggesting that although frugivores are important for dispersal, they are not essential for germination. Recruitment of buried and surface-sown seed differed between greenhouse and field experiments, with minimal recruitment of surface-sown seed in the field. Seed persistence was low, particularly under field conditions, with 0.75% seed viability after 6 months and 0% at 12 months. This provides an opportunity to target control efforts in south-eastern Queensland in spring before fruit set, when there is predicted to be few viable seeds in the soil.
Resumo:
The genus Asparagus includes at least six invasive species in Australia. Asparagus aethiopicus and A. africanus are invasive in subtropical Australia, and a third species, A. virgatus is naturalized and demonstrates localized spread in south east Queensland. To better understand how the attributes of these species contribute to their invasiveness, we compared fruit and seed traits, germination, seedling emergence, seed survival, and time-to-maturity. We further investigated dispersal ecology of A. africanus, examining the diet of a local frugivore, the figbird (Sphecotheres viridis) and the effect of gut passage on seedling emergence. Overall, A. aethiopicus was superior in germination and emergence, with the highest mean germination (98.8%) and emergence (94.5%) under optimal conditions and higher emergence (mean of 73.3%) across all treatments. In contrast, A. africanus had the lowest germination under optimal conditions (71.7%) and low mean seedling emergence (49.5%), but had fruits with the highest relative yield (ratio of dry pulp to fruit fresh weight) that were favored by a local frugivore. Figbirds consumed large numbers of A. africanus fruits (~30% of all non-Ficus fruits), and seedling germination was not significantly affected by gut passage compared to unprocessed fruits. Asparagus virgatus germinated poorly under cool, light conditions (1.4%) despite a high optimum mean (95.0%) and had low mean performance across emergence treatments (36.3%). The species also had fruits with a low pulp return for frugivores. For all species, seed survival declined rapidly in the first 12 mo and fell to < 3.2% viability at 36 mo. On the basis of the traits considered, A. virgatus is unlikely to have the invasive potential of its congeners. Uniformly short seed survival times suggest that weed managers do not have to contend with a substantial persistent soil-stored seed bank, but frugivore-mediated dispersal beyond existing infestations will present a considerable management challenge.
Resumo:
During a 25 d Lagrangian study in May and June 1990 in the Northeast Atlantic Ocean, marine snow aggregates were collected using a novel water bottle, and the composition was determined microscopically. The aggregates contained a characteristic signature of a matrix of bacteria, cyanobacteria and autotrophic picoplankton with inter alia inclusions of the tintiniid Dictyocysta elegans and large pennate diatoms. The concentration of bacteria and cyanobacteria was much greater on the aggregates than when free-living by factors of 100 to 6000 and 3000 to 2 500 000, respectively, depending on depth. Various species of crustacean plankton and micronekton were collected, and the faecal pellets produced after capture were examined. These often contained the marine snow signature, indicating that these organisms had been consuming marine snow. In some cases, marine snow material appeared to dominate the diet. This implies a food-chain short cut wherby material, normally too small to be consumed by the mesozooplankton, and considered to constitute the diet of the microplankton can become part of the diet of organisms higher in the food-chain. The micronekton was dominated by the amphipod Themisto compressa, whose pellets also contained the marine snow signature. Shipboard incubation experiments with this species indicated that (1) it does consume marine snow, and (2) its gut-passage time is sufficiently long for material it has eaten in the upper water to be defecated at its day-time depth of several hundred meters. Plankton and micronekton were collected with nets to examine their vertical distribution and diel migration and to put into context the significance of the flux of material in the guts of migrants. “Gut flux” for the T. compressa population was calculated to be up to 2% of the flux measured simultaneously by drifting sediment traps and <5% when all migrants are considered. The in situ abundance and distribution of marine snow aggregates (>0.6 mm) was examined photographically. A sharp concentration peak was usually encountered in the depth range 40 to 80 m which was not associated with peaks of in situ fluorescence or attenuation but was just below or at the base of the upper mixed layer. The feeding behaviour of zooplankton and nekton may influence these concentration gradients to a considerable extent, and hence affect the flux due to passive settling of marine snow aggregates.
Resumo:
Fruit-eating by fishes represents an ancient (perhaps Paleozoic) interaction increasingly regarded as important for seed dispersal (ichthyochory) in tropical and temperate ecosystems. Most of the more than 275 known frugivorous species belong to the mainly Neotropical Characiformes (pacus, piranhas) and Siluriformes (catfishes), but cypriniforms (carps, minnows) are more important in the Holarctic and Indomalayan regions. Frugivores are among the most abundant fishes in Neotropical floodplains where they eat the fruits of a wide variety of trees and shrubs. By consuming fruits, fishes gain access to rich sources of carbohydrates, lipids and proteins and act as either seed predators or seed dispersers. With their often high mobility, large size, and great longevity, fruit-eating fishes can play important roles as seed dispersers and exert strong influences on local plant-recruitment dynamics and regional biodiversity. Recent feeding experiments focused on seed traits after gut passage support the idea that fishes are major seed dispersers in floodplain and riparian forests. Overfishing, damming, deforestation and logging potentially diminish ichthyochory and require immediate attention to ameliorate their effects. Much exciting work remains in terms of fish and plant adaptations to ichthyochory, dispersal regimes involving fishes in different ecosystems, and increased use of nondestructive methods such as stomach lavage, stable isotopes, genetic analyses and radio transmitters to determine fish diets and movements. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
The effectiveness of seed dispersal by vertebrates has been analysed by examining both quantitative and qualitative components (Jordano & Schupp 2000, Schupp et al. 2010). While the quantitative component is relatively easily assessed in the field (e.g. visitation rate, number of fruits eaten per visit), the qualitative component (e.g. fate of dispersed seeds, seed treatment in the digestive system of the disperser) is rarely studied under natural conditions, because it is difficult to measure the effects on seeds once ingested by the dispersers (Cortes et al. 2009). © Cambridge University Press 2012.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
FAPESP (BIOTA Program) [2007/03392-6, 2010/04927-3]
Resumo:
Endozoochory is an important dispersal mechanism for seed plants and has recently been demonstrated to occur also in spore plants, such as ferns, which are commonly consumed by herbivores. However, it is not known whether fern species from particular habitats are differentially preferred by herbivores and whether their spores differ in their ability to survive the gut passage of herbivores. Such differences would suggest adaptation to endozoochorous dispersal, as it is known for seed plants. Moreover, it is unclear whether herbivore species differ in their efficiency to disperse fern spores. In a factorial experiment, we fed fertile leaflets of 13 fern species from different forest and open habitats to three polyphagous herbivore species and recorded the germination of spores from feces after 46 and 81 days. Fern spores germinated in 66 % of all samples after 46 days. At this stage, germination success differed among fern and herbivore species, but was independent of the ferns’ habitat. Interestingly, after 81 days fern spores germinated in 85 % of all samples and earlier significant differences in germination success among fern and herbivore species were not sustained. The overall high germination success and the absence of differences among fern species from different habitats together with the consistency across three tested herbivores strongly imply endozoochorous dispersal to be a taxonomically widespread phenomenon among fern-eating herbivores, which all might act as potential dispersal vectors. © 2015, Springer Science+Business Media Dordrecht.
Resumo:
Gut dissection of fixed individuals from samples collected during Cruise 6 of R/V Vityaz-2 in April-May 1984 was used to study feeding of Sagitta setosa in the layers of daytime plankton accumulation at the lower boundary of the oxycline. The principal food was copepodite stage V of Calanus and females of Calanus and Pseudocalanus. Analysis of daytime and night data with reference to length of migratory alterations of Sagitta populations and gut passage time indicates that they feed actively in the layers of day¬time plankton accumulations. Total food consumption during time spent in the subsurface layers ranged from 0.025-0.097 cal/indiv. in 12 h, equivalent to 37-143% of their metabolic energy expenditure. Over the course of 12 h Sagitta population consumes 0.3-5% and 0.5-6% of population of stage V copepodites and females of Calanus and Pseudocalanus females, respectively.