1000 resultados para Gumbel distribution
Resumo:
We report a universal large deviation behavior of spatially averaged global injected power just before the rejuvenation of the jammed state formed by an aging suspension of laponite clay under an applied stress. The probability distribution function (PDF) of these entropy consuming strongly non-Gaussian fluctuations follow an universal large deviation functional form described by the generalized Gumbel (GG) distribution like many other equilibrium and nonequilibrium systems with high degree of correlations but do not obey the Gallavotti-Cohen steady-state fluctuation relation (SSFR). However, far from the unjamming transition (for smaller applied stresses) SSFR is satisfied for both Gaussian as well as non-Gaussian PDF. The observed slow variation of the mean shear rate with system size supports a recent theoretical prediction for observing GG distribution.
Resumo:
The Gumbel distribution is perhaps the most widely applied statistical distribution for problems in engineering. We propose a generalization-referred to as the Kumaraswamy Gumbel distribution-and provide a comprehensive treatment of its structural properties. We obtain the analytical shapes of the density and hazard rate functions. We calculate explicit expressions for the moments and generating function. The variation of the skewness and kurtosis measures is examined and the asymptotic distribution of the extreme values is investigated. Explicit expressions are also derived for the moments of order statistics. The methods of maximum likelihood and parametric bootstrap and a Bayesian procedure are proposed for estimating the model parameters. We obtain the expected information matrix. An application of the new model to a real dataset illustrates the potentiality of the proposed model. Two bivariate generalizations of the model are proposed.
Resumo:
Let n points be placed independently in d-dimensional space according to the density f(x) = A(d)e(-lambda parallel to x parallel to alpha), lambda, alpha > 0, x is an element of R-d, d >= 2. Let d(n) be the longest edge length of the nearest-neighbor graph on these points. We show that (lambda(-1) log n)(1-1/alpha) d(n) - b(n) converges weakly to the Gumbel distribution, where b(n) similar to ((d - 1)/lambda alpha) log log n. We also prove the following strong law for the normalized nearest-neighbor distance (d) over tilde (n) = (lambda(-1) log n)(1-1/alpha) d(n)/log log n: (d - 1)/alpha lambda <= lim inf(n ->infinity) (d) over tilde (n) <= lim sup(n ->infinity) (d) over tilde (n) <= d/alpha lambda almost surely. Thus, the exponential rate of decay alpha = 1 is critical, in the sense that, for alpha > 1, d(n) -> 0, whereas, for alpha <= 1, d(n) -> infinity almost surely as n -> infinity.
Resumo:
We study the statistical properties of spatially averaged global injected power fluctuations for Taylor-Couette flow of a wormlike micellar gel formed by surfactant cetyltrimethylammonium tosylate. At sufficiently high Weissenberg numbers the shear rate, and hence the injected power p(t), at a constant applied stress shows large irregular fluctuations in time. The nature of the probability distribution function (PDF) of p(t) and the power-law decay of its power spectrum are very similar to that observed in recent studies of elastic turbulence for polymer solutions. Remarkably, these non-Gaussian PDFs can be well described by a universal, large deviation functional form given by the generalized Gumbel distribution observed in the context of spatially averaged global measures in diverse classes of highly correlated systems. We show by in situ rheology and polarized light scattering experiments that in the elastic turbulent regime the flow is spatially smooth but random in time, in agreement with a recent hypothesis for elastic turbulence.
Some characterization problems associated with the bivariate exponential and geometric distributions
Resumo:
It is highly desirable that any multivariate distribution possessescharacteristic properties that are generalisation in some sense of the corresponding results in the univariate case. Therefore it is of interest to examine whether a multivariate distribution can admit such characterizations. In the exponential context, the question to be answered is, in what meaning— ful way can one extend the unique properties in the univariate case in a bivariate set up? Since the lack of memory property is the best studied and most useful property of the exponential law, our first endeavour in the present thesis, is to suitably extend this property and its equivalent forms so as to characterize the Gumbel's bivariate exponential distribution. Though there are many forms of bivariate exponential distributions, a matching interest has not been shown in developing corresponding discrete versions in the form of bivariate geometric distributions. Accordingly, attempt is also made to introduce the geometric version of the Gumbel distribution and examine several of its characteristic properties. A major area where exponential models are successfully applied being reliability theory, we also look into the role of these bivariate laws in that context. The present thesis is organised into five Chapters
Resumo:
Global flood hazard maps can be used in the assessment of flood risk in a number of different applications, including (re)insurance and large scale flood preparedness. Such global hazard maps can be generated using large scale physically based models of rainfall-runoff and river routing, when used in conjunction with a number of post-processing methods. In this study, the European Centre for Medium Range Weather Forecasts (ECMWF) land surface model is coupled to ERA-Interim reanalysis meteorological forcing data, and resultant runoff is passed to a river routing algorithm which simulates floodplains and flood flow across the global land area. The global hazard map is based on a 30 yr (1979–2010) simulation period. A Gumbel distribution is fitted to the annual maxima flows to derive a number of flood return periods. The return periods are calculated initially for a 25×25 km grid, which is then reprojected onto a 1×1 km grid to derive maps of higher resolution and estimate flooded fractional area for the individual 25×25 km cells. Several global and regional maps of flood return periods ranging from 2 to 500 yr are presented. The results compare reasonably to a benchmark data set of global flood hazard. The developed methodology can be applied to other datasets on a global or regional scale.
Resumo:
Extreme rainfall events have triggered a significant number of flash floods in Madeira Island along its past and recent history. Madeira is a volcanic island where the spatial rainfall distribution is strongly affected by its rugged topography. In this thesis, annual maximum of daily rainfall data from 25 rain gauge stations located in Madeira Island were modelled by the generalised extreme value distribution. Also, the hypothesis of a Gumbel distribution was tested by two methods and the existence of a linear trend in both distributions parameters was analysed. Estimates for the 50– and 100–year return levels were also obtained. Still in an univariate context, the assumption that a distribution function belongs to the domain of attraction of an extreme value distribution for monthly maximum rainfall data was tested for the rainy season. The available data was then analysed in order to find the most suitable domain of attraction for the sampled distribution. In a different approach, a search for thresholds was also performed for daily rainfall values through a graphical analysis. In a multivariate context, a study was made on the dependence between extreme rainfall values from the considered stations based on Kendall’s τ measure. This study suggests the influence of factors such as altitude, slope orientation, distance between stations and their proximity of the sea on the spatial distribution of extreme rainfall. Groups of three pairwise associated stations were also obtained and an adjustment was made to a family of extreme value copulas involving the Marshall–Olkin family, whose parameters can be written as a function of Kendall’s τ association measures of the obtained pairs.
Resumo:
Considerando a importância sócio-econômica da região de Presidente Prudente, este estudo teve como objetivo estimar a precipitação pluvial máxima esperada para diferentes níveis de probabilidade e verificar o grau de ajuste dos dados ao modelo Gumbel, com as estimativas dos parâmetros obtidas pelo método de máxima verossimilhança. Pelos resultados, o teste de Kolmogorov-Sminorv (K-S) mostrou que a distribuição Gumbel testada se ajustou com p-valor maior que 0.28 para todos os períodos de tempo considerados, comprovando que a distribuição Gumbel apresenta um bom ajustamento aos dados observados para representar as precipitações pluviais máximas. As estimativas de precipitação obtidas pelo método de máxima verossimilhança são consistentes, conseguindo reproduzir com bastante fidelidade o regime de chuvas da região de Presidente Prudente. Assim, o conhecimento da distribuição da precipitação pluvial máxima mensal e das estimativas das precipitações diárias máximas esperadas, possibilita um planejamento estratégico melhor, minimizando assim o risco de ocorrência de perdas econômicas para essa região.
Resumo:
2000 Mathematics Subject Classification: 60G70, 60F12, 60G10.
Resumo:
In dieser Arbeit werden mithilfe der Likelihood-Tiefen, eingeführt von Mizera und Müller (2004), (ausreißer-)robuste Schätzfunktionen und Tests für den unbekannten Parameter einer stetigen Dichtefunktion entwickelt. Die entwickelten Verfahren werden dann auf drei verschiedene Verteilungen angewandt. Für eindimensionale Parameter wird die Likelihood-Tiefe eines Parameters im Datensatz als das Minimum aus dem Anteil der Daten, für die die Ableitung der Loglikelihood-Funktion nach dem Parameter nicht negativ ist, und dem Anteil der Daten, für die diese Ableitung nicht positiv ist, berechnet. Damit hat der Parameter die größte Tiefe, für den beide Anzahlen gleich groß sind. Dieser wird zunächst als Schätzer gewählt, da die Likelihood-Tiefe ein Maß dafür sein soll, wie gut ein Parameter zum Datensatz passt. Asymptotisch hat der Parameter die größte Tiefe, für den die Wahrscheinlichkeit, dass für eine Beobachtung die Ableitung der Loglikelihood-Funktion nach dem Parameter nicht negativ ist, gleich einhalb ist. Wenn dies für den zu Grunde liegenden Parameter nicht der Fall ist, ist der Schätzer basierend auf der Likelihood-Tiefe verfälscht. In dieser Arbeit wird gezeigt, wie diese Verfälschung korrigiert werden kann sodass die korrigierten Schätzer konsistente Schätzungen bilden. Zur Entwicklung von Tests für den Parameter, wird die von Müller (2005) entwickelte Simplex Likelihood-Tiefe, die eine U-Statistik ist, benutzt. Es zeigt sich, dass für dieselben Verteilungen, für die die Likelihood-Tiefe verfälschte Schätzer liefert, die Simplex Likelihood-Tiefe eine unverfälschte U-Statistik ist. Damit ist insbesondere die asymptotische Verteilung bekannt und es lassen sich Tests für verschiedene Hypothesen formulieren. Die Verschiebung in der Tiefe führt aber für einige Hypothesen zu einer schlechten Güte des zugehörigen Tests. Es werden daher korrigierte Tests eingeführt und Voraussetzungen angegeben, unter denen diese dann konsistent sind. Die Arbeit besteht aus zwei Teilen. Im ersten Teil der Arbeit wird die allgemeine Theorie über die Schätzfunktionen und Tests dargestellt und zudem deren jeweiligen Konsistenz gezeigt. Im zweiten Teil wird die Theorie auf drei verschiedene Verteilungen angewandt: Die Weibull-Verteilung, die Gauß- und die Gumbel-Copula. Damit wird gezeigt, wie die Verfahren des ersten Teils genutzt werden können, um (robuste) konsistente Schätzfunktionen und Tests für den unbekannten Parameter der Verteilung herzuleiten. Insgesamt zeigt sich, dass für die drei Verteilungen mithilfe der Likelihood-Tiefen robuste Schätzfunktionen und Tests gefunden werden können. In unverfälschten Daten sind vorhandene Standardmethoden zum Teil überlegen, jedoch zeigt sich der Vorteil der neuen Methoden in kontaminierten Daten und Daten mit Ausreißern.