932 resultados para Guinea grass
Resumo:
This study was carried out to analyze the tillering profile of Guinea grass (Panicum maximum cv. Tanzania) pastures subjected to two grazing frequencies (time necessary to intercept 90 and 95% of the incoming light) and two post-grazing heights (30 and 50 cm) in the period from November 2005 to October 2006. The experimental design was of completely randomized blocks with three replications, in a 2 × 2 factorial arrangement. At the end of the spring, pastures managed with 90% light interception showed greater tiller appearance rates in relation to pastures managed with 95%, regardless of post-grazing height. In the summer and fall, pastures managed with post-grazing height of 30 cm showed higher tiller appearance rates in comparison with pastures managed at 50 cm, regardless of grazing frequency. Concerning the tiller mortality rates, in the summer, higher values were found for pastures managed at 90/50 and 95/30 (interception/height), intermediate values at 90/30 and lower values in those managed at 95/50. Pastures managed at 90/30, 95/30 and 95/50 in the fall presented greater tiller mortality rates than those managed at 90/50. These differences do not occur in the winter/beginning of spring. The stability index remained above 1 all through the experimental period. All management strategies evaluated are adequate for Guinea grass.
Resumo:
This experiment was carried out to analyze the tillering dynamics of the species Panicum maximum cv. Mombaca subjected to three post-grazing heights: residue of 30 cm (30); residue of 50 cm (50); and residue of 50 cm during spring and summer, lowered to 40 cm in the first fall season grazing and to 30 cm in the following grazing cycle, resuming to 50 cm after the first grazing of the following spring season (50-30). Grazings were initiated whenever the swards intercepted 95% of the incident light. The post-grazing heights were allocated in the experimental units in a completely randomized block design with three replications. The density of basal tillers did not vary between the residual heights evaluated. Swards managed with variable residual height (50-30) presented higher rates of appearance and mortality of basal tillers during the summer of 2007, indicating high tiller renovation. Regardless of the post-grazing height evaluated, lower rates of appearance of basal tillers were found in the spring of 2006. The stability index of guinea grass cv. Mombaca was close to 1.0 throughout the experimental period. Swards managed with variable post-grazing present structural changes able to improve the regrowth vigor, which may be important to maximize the use of the forage species in the production system.
Resumo:
This study was conducted in order to evaluate the morphogenetic and structural characteristics of guinea grass cv. Mombasa under three post-grazing heights (intense - 30 cm, lenient - 50 cm and variable - 50 in spring-summer and 30 cm in autumn-winter) when sward light interception reached 95% during regrowth. Post-grazing heights were allocated to experimental units (0.25 ha) in a completely randomized block design with three replications. Post-grazing heights affected only leaf elongation rate and the number of live leaves. Pastures managed with variable post-grazing height showed higher leaf elongation rate in the summer of 2007. This management strategy also resulted in a higher number of live leaves. During the spring of 2006, plants showed lower leaf elongation rate, leaf appearance rate and number of live leaves, and greater phyllochron and leaf lifespan. In contrast, during the summer of 2007, the leaf appearance rate, leaf elongation rate, number of live leaves, and final leaf length were greater while phyllochron, stem elongation rate, and leaf senescence rate were lower. The management of the guinea grass cv. Mombasa with intense or variable post-grazing height throughout the year seems to represent an interesting management target, in terms of leaf appearance rate and number of live leaves.
Resumo:
The objective of this research was to assess morphogenetic and structural characteristics of tillers of guinea grass cv. Tanzania at different ages. The pastures of guinea grass were managed in six pasture conditions related to the combination of three frequencies (90, 95, and 99% light interception) and two post-grazing heights (25 and 50 cm). In these six pastures conditions, three tiller ages were evaluated (young, mature, and old). The design was of completely randomized block with three replications. Young tillers exhibited higher leaf appearance rate and leaf elongation rate and, consequently, higher final leaf length and number of live leaves than mature and old tillers, regardless of the pasture condition. On pastures managed with 90 or 95% light interception associated with a post-grazing height of 25 cm, old tillers presented longer leaf lifespan than young and mature ones. There is a progressive reduction in the vigor of growth of pastures of guinea grass cv. Tanzania with advancing tiller age.
Resumo:
Renewable hydrocarbon biofuels are being investigated as possible alternatives to conventional liquid transportation fossil fuels like gasoline, kerosene (aviation fuel), and diesel. A diverse range of biomass feedstocks such as corn stover, sugarcane bagasse, switchgrass, waste wood, and algae, are being evaluated as candidates for pyrolysis and catalytic upgrading to produce drop-in hydrocarbon fuels. This research has developed preliminary life cycle assessments (LCA) for each feedstock-specific pathway and compared the greenhouse gas (GHG) emissions of the hydrocarbon biofuels to current fossil fuels. As a comprehensive study, this analysis attempts to account for all of the GHG emissions associated with each feedstock pathway through the entire life cycle. Emissions from all stages including feedstock production, land use change, pyrolysis, stabilizing the pyrolysis oil for transport and storage, and upgrading the stabilized pyrolysis oil to a hydrocarbon fuel are included. In addition to GHG emissions, the energy requirements and water use have been evaluated over the entire life cycle. The goal of this research is to help understand the relative advantages and disadvantages of the feedstocks and the resultant hydrocarbon biofuels based on three environmental indicators; GHG emissions, energy demand, and water utilization. Results indicate that liquid hydrocarbon biofuels produced through this pyrolysis-based pathway can achieve greenhouse gas emission savings of greater than 50% compared to petroleum fuels, thus potentially qualifying these biofuels under the US EPA RFS2 program. GHG emissions from biofuels ranged from 10.7-74.3 g/MJ from biofuels derived from sugarcane bagasse and wild algae at the extremes of this range, respectively. The cumulative energy demand (CED) shows that energy in every biofuel process is primarily from renewable biomass and the remaining energy demand is mostly from fossil fuels. The CED for biofuel range from 1.25-3.25 MJ/MJ from biofuels derived from sugarcane bagasse to wild algae respectively, while the other feedstock-derived biofuels are around 2 MJ/MJ. Water utilization is primarily from cooling water use during the pyrolysis stage if irrigation is not used during the feedstock production stage. Water use ranges from 1.7 - 17.2 gallons of water per kg of biofuel from sugarcane bagasse to open pond algae, respectively.
Resumo:
2015
Resumo:
Objetivou-se com este trabalho avaliar o controle em pré-emergência de Brachiaria decumbens, Digitaria horizontalis e Panicum maximum pelo herbicida S-metolachlor aplicado em pré-emergência em área de cana-de-açúcar colhida mecanicamente sem queima prévia das plantas, com e sem palha sobre o solo. O delineamento experimental foi o de blocos ao acaso, com quatro repetições, em esquema de parcela subdividida 7 x 2. Nas parcelas, foram estudados cinco tratamentos de herbicidas (S-metolachlor a 1,44, 1,92 e 2,40 kg ha-1; clomazone a 1,20 kg ha-1; e isoxaflutole a 0,188 kg ha-1) e duas testemunhas sem aplicação. Nas subparcelas, foi avaliada a manutenção ou não da palha de cana na superfície do solo. A eficácia do herbicida S-metolachlor não foi prejudicada pela presença de 14 ou 20 t ha-1 de palha de cana sobre o solo. Com a manutenção da palha, a dosagem de S-metolachlor para o controle adequado das plantas daninhas foi de 1,44kgha-1. No ambiente sem palha, o S-metolachlor controlou B. decumbens, D. horizontalis e P. maximum nas dosagens de 1.92, 1.44 e 1.92kgha-1, respectivamente. Nas duas condições de palha, os herbicidas clomazone e isoxaflutole foram eficazes para as espécies estudadas. O S-metolachlor não causou nenhum sintoma visível de intoxicação à cana-de-açúcar. O clomazone e o isoxaflutole ocasionaram injúrias visuais às plantas de cana. Os herbicidas estudados não afetaram o número de colmos viáveis por m², a altura e o diâmetro de colmos.
Resumo:
Pasture degradation is one of the greatest problems related to land use in the Amazon region, forcing farmers to open new forest areas. Many studies have identified the causes and the factors involved in this degradation process, in an attempt to reverse the situation. The purpose of this study was to examine the relationship between pasture degradation and some soil properties, to try to identify the most significant soil features in the degradation process. A cattle raising farm in the eastern Amazon region, with pastures of different ages and degrees of degradation, was used as the site for this study: a primary forest area, PN; three Guinea grass (Panicum maximum Jacq.) pastures in an increasingly degraded sequence-P1, P2 and P3; one Gamba grass (Andropogon gayanus Kunth) pasture following an extremely degraded Guinea grass pasture, P4. Aboveground phytomass data showed differences between the pastures, reflecting initially observed degradation levels. Grass biomass decreased sharply from P1 to P2 and disappeared at P3. Pasture recovery with Gamba grass at P4 was very successful, with grass biomass higher than P1 and weed biomass smaller than P2 and P3. Root biomass also decreased with pasture degradation. Soil bulk density increased with pasture decrease at the topsoil layer. Results from the soil chemical analysis showed that there were no signs of decrease in organic carbon and total nitrogen after the forest was transformed into pasture. In all pastures, degraded or not, the soil pH, the sum of bases and the saturation degree were higher than in the forest soil. The extractable phosphorus content, lower in forest soil, remained quite stable in pasture soils, but it could become a limiting factor for the maintenance of Guinea grass. Results indicated that pasture degradation does not seem to be directly related to the modification of the chemical features of soils. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
O objetivo deste trabalho foi avaliar: (i) a relação entre a degradação de pastagens de colonião manejadas com queima, e as modificações nas propriedades físicas e morfológicas de um Argissolo Vermelho-Amarelo da Amazônia; (ii) o crescimento radicular de pastagens com diferentes níveis de degradação; (iii) o potencial de recuperação de pastagens degradadas de colonião com a introdução de andropógon. Numa propriedade rural da Região de Marabá, PA, foram estudados quatro tipos de pastagem: pastagem produtiva de colonião (Panicum maximum Jacq.); pastagem de colonião em declínio produtivo; pastagem de colonião degradada (capoeira); pastagem de colonião degradada e recuperada com andropógon (Andropogon gayanus Kunth). Como referência das propriedades do solo antes do desmatamento, estudou-se, também, uma reserva de mata nativa. A queima das pastagens foi prática usual, e apesar disso, estas não foram adubadas. A degradação da pastagem diminuiu a cobertura do solo e o deixou exposto à chuva e ao pisoteio do gado, o que resultou em aumento da densidade do solo na camada superficial e diminuição do grau de floculação da argila e da porosidade total. A diminuição da produção da parte aérea na pastagem degradada foi acompanhada de diminuição do número de raízes no perfil do solo, e da concentração do sistema radicular próximo à superfície. O andropógon demonstrou bom potencial para recuperação das áreas de pastagens degradadas, na Região Amazônica.
Resumo:
Currently Brazil is one of the leading paper and pulp producers in the world market, where Sao Paulo State boasts the greatest production. Because of the pulp prices falling in the world market and the low costs of a second coppice rotation, two experiments (started May and December, 2000) were conducted to evaluate the effects of weeds and of weed-free periods (0, 3, 6, 9, 12, 15 and 18 months) on the growth of Eucalyptus grandis second coppice plants. The field trials were set up in a randomized block design with four replicates and the experimental plots consisted of three rows of fve plants. The December weed community was composed mainly of Brachiaria decumbens (Surinam grass) and Panicum maximum (Guinea grass) and the May weed community was composed mainly by B. decumbens and Digitaria insularis (Sour-grass). Weeds had a low negative influence on growth, diameter development and macronutrients content of E. grandis second coppice plants. In both experiments, slight reductions in growth were observed only between the fully weeded and weed-free periods, after 18 months.
Resumo:
This study aimed to evaluate the guinea grass effect (Panicum maximum) on the initial growth of different Eucalyptus × urograndis clones. Two assays were established with eucalyptus clones and guinea grass seedlings. The plants were grown in plots with cement borders filled with soil. Each plot received a eucalyptus seedling. The first assay had a completely randomized experimental design, with three replications, and treatments in a 5x2 factorial scheme (five eucalyptus clones and the absence or presence of two guinea grass plants at 10 cm distance from eucalyptus seedling). The second assay was similar to the first, however with three eucalyptus clones. The experimental design was completely randomized, with five replications, and a 3x2 factorial scheme (three eucalyptus clones and the absence or presence of two guinea grass plants). The presence of eucalyptus clones did not affect guinea grass development. The eucalyptus clones that coexisted with guinea grass plants did not show differences in their development, making the clones equal when under competition. The most susceptible characteristics of eucalyptus clones to guinea grass were foliar area, shoot and stem dry matter. Clone 3 showed the most sensitivity to guinea grass, and clone 1 was the most tolerant, but all clones studied suffered a negative interference from guinea grass.
Resumo:
This experiment was carried out to evaluate canopy height of guinea grass with 95% of photosynthetic active radiation interception and quantify the nitrogen fertilization influence and plants' density on the morphogenesis and structural characteristics of Tanzania grass. Four doses of N (0, 80, 160 e 320 kg.ha -1), were arranged with three plant densities (9, 25 and 49 plants.m -2), according to 4 × 3 completely randomized design, with three repetitions. Total dry matter (DM) accumulation throughout the experimental period was influenced by nitrogen fertilization and plants' density. In the rainy period, the higher nitrogen fertilization decreased the harvesting intervals, and consequently, increased the number of harvests. The rate of leaf appearance and the phyllochron were influenced only under nitrogen fertilization in the transition period of rainy and dry weather. Tanzania grass canopy height under 95% of light interception was positively influenced because of the plant densities in rainy period and transition period between rainy/drought and drought. Tanzania grass height under 95% of light interception presented variations along the evaluations and the values were higher (near 70 cm) in the rainy period, followed by transition period rain/drought and drought. © 2011 Sociedade Brasileira de Zootecnia.
Resumo:
In Brazil the intensive agriculture use, mainly pasture, is the main cause of the presence of extensive areas of degraded lands. This study aimed to assess the impact of different soil management practices in a pasture degraded area used as garbage disposal. The experiment was performed at the Faculdade de Engenharia Agrícola, Universidade Estadual de Campinas - UNICAMP, in Campinas, state of São Paulo, Brazil, from 1990 to 1996. This area has undergone a process of recovery through removal of trash deposited on the surface, in 1985, levelling of soil, followed by application of limestone, subsoiling, planting of legumes (Crotalaria juncea) and crop rotation (soybean and maize). Since 1990 only popcorn maize was grown and established plots managed with different soil tillage systems, including harrow, chisel plow, moldboard plow, no tillage, disk plow and revolving hoe. One plot was planted exclusively with guinea grass (Panicum maximum) to serve as a reference for minimum loss of soil and another grown on a downhill direction to correspond to the expected maximum erosion. There were differences in sediment loss, nutrient loss and productivity of the popcorn maize in the period analyzed. The chisel plow and no tillage treatments caused the slightest loss of soil and nutrients, compared to other tillage systems. The results show that the soil management systems influenced the physical and chemical characteristics of soil, allowing an economical and environmental recovery of the area, providing the conditions for grain agricultural production.
Resumo:
Sorghum is an excellent alternative to other grains in poor soil where corn does not develop very well, as well as in regions with warm and dry winters. Intercropping sorghum [Sorghum bicolor (L.) Moench] with forage crops, such as palisade grass [Brachiaria brizantha (Hochst. ex A. Rich) Stapf] or guinea grass (Panicum maximum Jacq.), provides large amounts of biomass for use as straw in no-tillage systems or as pasture. However, it is important to determine the appropriate time at which these forage crops have to be sown into sorghum systems to avoid reductions in both sorghum and forage production and to maximize the revenue of the cropping system. This study, conducted for three growing seasons at Botucatu in the State of São Paulo in Brazil, evaluated how nutrient concentration, yield components, sorghum grain yield, revenue, and forage crop dry matter production were affected by the timing of forage intercropping. The experimental design was a randomized complete block design. Intercropping systems were not found to cause reductions in the nutrient concentration in sorghum plants. The number of panicles per unit area of sorghum alone (133,600), intercropped sorghum and palisade grass (133,300) and intercropped sorghum and guinea grass (134,300) corresponded to sorghum grain yields of 5439, 5436 and 5566kgha-1, respectively. However, the number of panicles per unit area of intercropped sorghum and palisade grass (144,700) and intercropped sorghum and guinea grass (145,000) with topdressing of fertilizers for the sorghum resulted in the highest sorghum grain yields (6238 and 6127kgha-1 for intercropping with palisade grass and guinea grass, respectively). Forage production (8112, 10,972 and 13,193Mg ha-1 for the first, second and third cuts, respectively) was highest when sorghum and guinea grass were intercropped. The timing of intercropping is an important factor in sorghum grain yield and forage production. Palisade grass or guinea grass must be intercropped with sorghum with topdressing fertilization to achieve the highest sorghum grain yield, but this significantly reduces the forage production. Intercropping sorghum with guinea grass sown simultaneously yielded the highest revenue per ha (€ 1074.4), which was 2.4 times greater than the revenue achieved by sowing sorghum only. © 2013 Elsevier B.V.
Resumo:
Measuring shikimic acid accumulation in response to glyphosate applications can be a rapid and accurate way to quantify and predict glyphosate-induced damage to sensitive plants. The objective of this paper was to evaluate the effect of cover crop termination timing by glyphosate application on rice (Oryza sativa L.) yield in a no-till system. A factorial experiment, arranged in a split-plot design, was conducted for 2 yr. Treatments consisted of cover crops (main plots) and timed herbicide applications (subplots) to these cover crops (30, 20, 10, and 0 d before rice planting). There was a decrease in rice yield from 2866 kg ha-1 to 2322 kg ha-1 when the herbicide was applied closer to the rice planting day. Glyphosate application on cover crops increased shikimate concentrations in rice seedlings cultivated under palisade grass (Brachiaria brizantha), signal grass (B. ruziziensis), guinea grass (Panicum maximum), and weedy fallow (spontaneous vegetation) but not under millet (Pennisetum glaucum), which behaved similarly to the control (clean fallow, no glyphosate application). Glyphosate applications in the timing intervals used were associated with stress in the rice plants, and this association increased if cover crops took longer to completely dry and if higher amounts of biomass were produced. Millet, as a cover crop, allowed the highest seedling dry matter for upland rice and the highest rice yield. Our results suggest that using millet as a cover crop, with glyphosate application far from upland rice planting day (10 d or more), was the best option for upland rice under a no-tillage system. © Crop Science Society of America.