982 resultados para Guided Visual-search
Resumo:
Ohman and colleagues provided evidence for preferential processing of pictures depicting fear-relevant animals by showing that pictures of snakes and spiders are found faster among pictures of fiowers and mushrooms than vice versa and that the speed of detecting fear-relevant animals was not affected by set size whereas the speed of detecting fiowers/mushrooms was. Experiment 1 replicated this finding. Experiment 2, however, found similar search advantages when pictures of cats and horses or of wolves and big cats were to be found among pictures of flowers and mushrooms. Moreover, Experiment 3, in a within subject comparison, failed to find faster identification of snakes and spiders than of cats and horses among flowers and mushrooms. The present findings seem to indicate that previous reports of preferential processing of pictures of snakes and spiders in a visual search task may reflect a processing advantage for animal pictures in general rather than fear-relevance.
Resumo:
It is well known that color coding facilitates search and iden- tification in real-life tasks. The aim of this work was to compare reac- tion times for normal color and dichromatic observers in a visual search experiment. A unique distracter color was used to avoid abnormal color vision vulnerability to background complexity. Reaction times for nor- mal color observers and dichromats were estimated for 2◦ central vision at 48 directions around a white point in CIE L∗a∗b∗ color space for systematic examination on the mechanisms of dichromatic color percep- tion. The results show that mean search times for dichromats were twice larger compared to the normal color observers and for all directions. The difference between the copunctual confusion lines and the confusion direction measure experimentally was 5.5◦ for protanopes and 7.5◦ for deuteranopes.
Resumo:
Impaired visual search is a hallmark of spatial neglect. When searching for an unique feature (e.g., color) neglect patients often show only slight visual field asymmetries. In contrast, when the target is defined by a combination of features (e.g., color and form) they exhibit a severe deficit of contralesional search. This finding suggests a selective impairment of the serial deployment of spatial attention. Here, we examined this deficit with a preview paradigm. Neglect patients searched for a target defined by the conjunction of shape and color, presented together with varying numbers of distracters. The presentation time was varied such that on some trials participants previewed the target together with same-shape/different-color distracters, for 300 or 600 ms prior to the appearance of additional different-shape/same-color distracters. On the remaining trials the target and all distracters were shown simultaneously. Healthy participants exhibited a serial search strategy only when all items were presented simultaneously, whereas in both preview conditions a pop-out effect was observed. Neglect patients showed a similar pattern when the target was presented in the right hemifield. In contrast, when searching for a target in the left hemifield they showed serial search in the no-preview condition, as well as with a preview of 300 ms, and partly even at 600 ms. A control experiment suggested that the failure to fully benefit from item preview was probably independent of accurate perception of time. Our results, when viewed in the context of existing literature, lead us to conclude that the visual search deficit in neglect reflects two additive factors: a biased representation of attentional priority in favor of ipsilesional information and exaggerated capture of attention by ipsilesional abrupt onsets.
Resumo:
Functional magnetic resonance imaging studies have indicated that efficient feature search (FS) and inefficient conjunction search (CS) activate partially distinct frontoparietal cortical networks. However, it remains a matter of debate whether the differences in these networks reflect differences in the early processing during FS and CS. In addition, the relationship between the differences in the networks and spatial shifts of attention also remains unknown. We examined these issues by applying a spatio-temporal analysis method to high-resolution visual event-related potentials (ERPs) and investigated how spatio-temporal activation patterns differ for FS and CS tasks. Within the first 450 msec after stimulus onset, scalp potential distributions (ERP maps) revealed 7 different electric field configurations for each search task. Configuration changes occurred simultaneously in the two tasks, suggesting that contributing processes were not significantly delayed in one task compared to the other. Despite this high spatial and temporal correlation, two ERP maps (120-190 and 250-300 msec) differed between the FS and CS. Lateralized distributions were observed only in the ERP map at 250-300 msec for the FS. This distribution corresponds to that previously described as the N2pc component (a negativity in the time range of the N2 complex over posterior electrodes of the hemisphere contralateral to the target hemifield), which has been associated with the focusing of attention onto potential target items in the search display. Thus, our results indicate that the cortical networks involved in feature and conjunction searching partially differ as early as 120 msec after stimulus onset and that the differences between the networks employed during the early stages of FS and CS are not necessarily caused by spatial attention shifts.
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Visual search is an important component of our interaction with our surroundings, allowing us to successfully identify external cues that impact our spatial navigation. Previous research has established fixation duration, fixation count, saccade velocity, and saccade amplitude as important indices of visual search. We examined the Visual Efficiency Detection Index (VEDI) comprising multiple aspects of visual search performance into a single measure of global visual performance. Forty participants, 10 adults ages 22-48, and children ages 6, 8, and 10, completed tests of working memory and visual search in response to stimuli relevant to pedestrian decision making. Results indicated VEDI statistically relates to established indices of visual search in relation to their interpretability for human performance. The VEDI was also sensitive to developmental differences in visual search performance, suggesting insight to its utility in the developmental psychological literature.
Resumo:
The efficacy of explicit and implicit learning paradigms was examined during the very early stages of learning the perceptual-motor anticipation task of predicting ball direction from temporally occluded footage of soccer penalty kicks. In addition, the effect of instructional condition on point-of-gaze during learning was examined. A significant improvement in horizontal prediction accuracy was observed in the explicit learning group; however, similar improvement was evident in a placebo group who watched footage of soccer matches. Only the explicit learning intervention resulted in changes in eye movement behaviour and increased awareness of relevant postural cues. Results are discussed in terms of methodological and practical issues regarding the employment of implicit perceptual training interventions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Facial expression recognition was investigated in 20 males with high functioning autism (HFA) or Asperger syndrome (AS), compared to typically developing individuals matched for chronological age (TD CA group) and verbal and non-verbal ability (TD V/NV group). This was the first study to employ a visual search, “face in the crowd” paradigm with a HFA/AS group, which explored responses to numerous facial expressions using real-face stimuli. Results showed slower response times for processing fear, anger and sad expressions in the HFA/AS group, relative to the TD CA group, but not the TD V/NV group. Reponses to happy, disgust and surprise expressions showed no group differences. Results are discussed with reference to the amygdala theory of autism.
Resumo:
Task relevance affects emotional attention in healthy individuals. Here, we investigate whether the association between anxiety and attention bias is affected by the task relevance of emotion during an attention task. Participants completed two visual search tasks. In the emotion-irrelevant task, participants were asked to indicate whether a discrepant face in a crowd of neutral, middle-aged faces was old or young. Irrelevant to the task, target faces displayed angry, happy, or neutral expressions. In the emotion-relevant task, participants were asked to indicate whether a discrepant face in a crowd of middle-aged neutral faces was happy or angry (target faces also varied in age). Trait anxiety was not associated with attention in the emotion-relevant task. However, in the emotion-irrelevant task, trait anxiety was associated with a bias for angry over happy faces. These findings demonstrate that the task relevance of emotional information affects conclusions about the presence of an anxiety-linked attention bias.
Resumo:
The challenge of moving past the classic Window Icons Menus Pointer (WIMP) interface, i.e. by turning it ‘3D’, has resulted in much research and development. To evaluate the impact of 3D on the ‘finding a target picture in a folder’ task, we built a 3D WIMP interface that allowed the systematic manipulation of visual depth, visual aides, semantic category distribution of targets versus non-targets; and the detailed measurement of lower-level stimuli features. Across two separate experiments, one large sample web-based experiment, to understand associations, and one controlled lab environment, using eye tracking to understand user focus, we investigated how visual depth, use of visual aides, use of semantic categories, and lower-level stimuli features (i.e. contrast, colour and luminance) impact how successfully participants are able to search for, and detect, the target image. Moreover in the lab-based experiment, we captured pupillometry measurements to allow consideration of the influence of increasing cognitive load as a result of either an increasing number of items on the screen, or due to the inclusion of visual depth. Our findings showed that increasing the visible layers of depth, and inclusion of converging lines, did not impact target detection times, errors, or failure rates. Low-level features, including colour, luminance, and number of edges, did correlate with differences in target detection times, errors, and failure rates. Our results also revealed that semantic sorting algorithms significantly decreased target detection times. Increased semantic contrasts between a target and its neighbours correlated with an increase in detection errors. Finally, pupillometric data did not provide evidence of any correlation between the number of visible layers of depth and pupil size, however, using structural equation modelling, we demonstrated that cognitive load does influence detection failure rates when there is luminance contrasts between the target and its surrounding neighbours. Results suggest that WIMP interaction designers should consider stimulus-driven factors, which were shown to influence the efficiency with which a target icon can be found in a 3D WIMP interface.
Resumo:
Processing efficiency theory predicts that anxiety reduces the processing capacity of working memory and has detrimental effects on performance. When tasks place little demand on working memory, the negative effects of anxiety can be avoided by increasing effort. Although performance efficiency decreases, there is no change in performance effectiveness. When tasks impose a heavy demand on working memory, however, anxiety leads to decrements in efficiency and effectiveness. These presumptions were tested using a modified table tennis task that placed low (LWM) and high (HWM) demands on working memory. Cognitive anxiety was manipulated through a competitive ranking structure and prize money. Participants' accuracy in hitting concentric circle targets in predetermined sequences was taken as a measure of performance effectiveness, while probe reaction time (PRT), perceived mental effort (RSME), visual search data, and arm kinematics were recorded as measures of efficiency. Anxiety had a negative effect on performance effectiveness in both LWM and HWM tasks. There was an increase in frequency of gaze and in PRT and RSME values in both tasks under high vs. low anxiety conditions, implying decrements in performance efficiency. However, participants spent more time tracking the ball in the HWM task and employed a shorter tau margin when anxious. Although anxiety impaired performance effectiveness and efficiency, decrements in efficiency were more pronounced in the HWM task than in the LWM task, providing support for processing efficiency theory.
Resumo:
Patients with homonymous hemianopia have altered visual search patterns, but it is unclear how rapidly this develops and whether it reflects a strategic adaptation to altered perception or plastic changes to tissue damage. To study the temporal dynamics of adaptation alone, we used a gaze-contingent display to simulate left or right hemianopia in 10 healthy individuals as they performed 25 visual search trials. Visual search was slower and less accurate in hemianopic than in full-field viewing. With full-field viewing, there were improvements in search speed, fixation density, and number of fixations over the first 9 trials, then stable performance. With hemianopic viewing, there was a rapid shift of fixation into the blind field over the first 5-7 trials, followed by continuing gradual improvements in completion time, number of fixations, and fixation density over all 25 trials. We conclude that in the first minutes after onset of hemianopia, there is a biphasic pattern of adaptation to altered perception: an early rapid qualitative change that shifts visual search into the blind side, followed by more gradual gains in the efficiency of using this new strategy, a pattern that has parallels in other studies of motor learning.
Resumo:
Based on neurophysiological findings and a grid to score binocular visual field function, two hypotheses concerning the spatial distribution of fixations during visual search were tested and confirmed in healthy participants and patients with homonymous visual field defects. Both groups showed significant biases of fixations and viewing time towards the centre of the screen and the upper screen half. Patients displayed a third bias towards the side of their field defect, which represents oculomotor compensation. Moreover, significant correlations between the extent of these three biases and search performance were found. Our findings suggest a new, more dynamic view of how functional specialisation of the visual field influences behaviour.