993 resultados para Guernsey cattle
Resumo:
Description based on: v. 23, published in 1907.
Resumo:
Mode of access: Internet.
Resumo:
Issues for 1881-1883, pt. I and II constitute vol. 1.--Issues for 1884-1885, vol. 2, pt. I and II constitute pts. III and IV.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Cover-title.
Resumo:
"... a compilation of reports, stories, pictures and special studies that have appeared in the Guernsey breeders' journal ..."
Resumo:
Mode of access: Internet.
Resumo:
The study described in this paper developed a model of animal movement, which explicitly recognised each individual as the central unit of measure. The model was developed by learning from a real dataset that measured and calculated, for individual cows in a herd, their linear and angular positions and directional and angular speeds. Two learning algorithms were implemented: a Hidden Markov model (HMM) and a long-term prediction algorithm. It is shown that a HMM can be used to describe the animal's movement and state transition behaviour within several “stay” areas where cows remained for long periods. Model parameters were estimated for hidden behaviour states such as relocating, foraging and bedding. For cows’ movement between the “stay” areas a long-term prediction algorithm was implemented. By combining these two algorithms it was possible to develop a successful model, which achieved similar results to the animal behaviour data collected. This modelling methodology could easily be applied to interactions of other animal species.
Resumo:
Managing livestock movement in extensive systems has environmental and production benefits. Currently permanent wire fencing is used to control cattle; this is both expensive and inflexible. Cattle are known to respond to auditory and visual cues and we investigated whether these can be used to manipulate their behaviour. Twenty-five Belmont Red steers with a mean live weight of 270kg were each randomly assigned to one of five treatments. Treatments consisted of a combination of cues (audio, tactile and visual stimuli) and consequence (electrical stimulation). The treatments were electrical stimulation alone, audio plus electrical stimulation, vibration plus electrical stimulation, light plus electrical stimulation and electrified electric fence (6kV) plus electrical stimulation. Cue stimuli were administered for 3s followed immediately by electrical stimulation (consequence) of 1kV for 1s. The experiment tested the operational efficacy of an on-animal control or virtual fencing system. A collar-halter device was designed to carry the electronics, batteries and equipment providing the stimuli, including audio, vibration, light and electrical of a prototype virtual fencing device. Cattle were allowed to travel along a 40m alley to a group of peers and feed while their rate of travel and response to the stimuli were recorded. The prototype virtual fencing system was successful in modifying the behaviour of the cattle. The rate of travel of cattle along the alley demonstrated the large variability in behavioural response associated with tactile, visual and audible cues. The experiment demonstrated virtual fencing has potential for controlling cattle in extensive grazing systems. However, larger numbers of cattle need to be tested to derive a better understanding of the behavioural variance. Further controlled experimental work is also necessary to quantify the interaction between cues, consequences and cattle learning.
Resumo:
We consider the problem of monitoring and controlling the position of herd animals, and view animals as networked agents with natural mobility but not strictly controllable. By exploiting knowledge of individual and herd behavior we would like to apply a vast body of theory in robotics and motion planning to achieving the constrained motion of a herd. In this paper we describe the concept of a virtual fence which applies a stimulus to an animal as a function of its pose with respect to the fenceline. Multiple fence lines can define a region, and the fences can be static or dynamic. The fence algorithm is implemented by a small position-aware computer device worn by the animal, which we refer to as a Smart Collar.We describe a herd-animal simulator, the Smart Collar hardware and algorithms for tracking and controlling animals as well as the results of on-farm experiments with up to ten Smart Collars.
Resumo:
Virtual fencing has the potential to control grazing livestock. Understanding and refi ning the cues that can alter behaviour is an integral part of autonomous animal control. A series of tests have been completed to explore the relationship between temperament and control. Prior to exposure to virtual fencing control the animals were scored for temperament using fl ight speed and a sociability index using contact logging devices. The behavioural response of 30, Belmont Red steers were observed for behavioural changes when presented with cues prior to receiving an electrical stimulation. A control and four treatments designed to interrupt the animal’s movement down an alley were tested. The treatments consisted of sound plus electrical stimulation, vibration plus electrical stimulation, a visual cue plus electrical stimulation and electrical stimulation by itself. The treatments were randomly applied to each animal over fi ve consecutive trials. A control treatment in which no cues were applied was used to establish a basal behavioural pattern. A trial was considered completed after each animal had been retained behind the cue barrier for at least 60 sec. All cues and electrical stimulation were manually applied from a laptop located on a portable 3.5 m tower located immediately outside the alley. The electric stimulation consisted of 1.0 Kv of electricity. Electric stimulation, sound and vibration along with the Global Position System (GPS) hardware to autonomously record the animal’s path within the alley were recorded every second.
Resumo:
ElectricCOW is a network, animal behaviour and agent simulator designed to allow detailed simulation of an ad-hoc model network built from small mote-like devices called flecks. Detailed radio communications, cattle behaviour and sensor and actuator network modelling allows a closed-loop environment, where the network can influence the behaviour of its mobile platforms.