999 resultados para Grups, Teoria de
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt
Resumo:
Given a non-positively curved 2-complex with a circle-valued Morse function satisfying some extra combinatorial conditions, we describe how to locally isometrically embed this in a larger non- positively curved 2-complex with free-by-cyclic fundamental group. This embedding procedure is used to produce examples of CAT(0) free-by-cyclic groups that contain closed hyperbolic surface subgroups with polynomial distortion of arbitrary degree. We also produce examples of CAT(0) hyperbolic free-by-cyclic groups that contain closed hyperbolic surface subgroups that are exponentially distorted.
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt.
Resumo:
Here we describe the results of some computational explorations in Thompson's group F. We describe experiments to estimate the cogrowth of F with respect to its standard finite generating set, designed to address the subtle and difficult question whether or not Thompson's group is amenable. We also describe experiments to estimate the exponential growth rate of F and the rate of escape of symmetric random walks with respect to the standard generating set.
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt.
Resumo:
We discuss metric and combinatorial properties of Thompson's group T, such as the normal forms for elements and uniqueness of tree pair diagrams. We relate these properties to those of Thompson's group F when possible, and highlight combinatorial differences between the two groups. We define a set of unique normal forms for elements of T arising from minimal factorizations of elements into convenient pieces. We show that the number of carets in a reduced representative of T estimates the word length, that F is undistorted in T, and that cyclic subgroups of T are undistorted. We show that every element of T has a power which is conjugate to an element of F and describe how to recognize torsion elements in T.
Resumo:
We prove that the fundamental group of any Seifert 3-manifold is conjugacy separable. That is, conjugates may be distinguished infinite quotients or, equivalently, conjugacy classes are closed in the pro-finite topology.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
The filling length of an edge-circuit η in the Cayley 2-complex of a finite presentation of a group is the minimal integer length L such that there is a combinatorial null-homotopy of η down to a base point through loops of length at most L. We introduce similar notions in which the full-homotopy is not required to fix a base point, and in which the contracting loop is allowed to bifurcate. We exhibit a group in which the resulting filling invariants exhibit dramatically different behaviour to the standard notion of filling length. We also define the corresponding filling invariants for Riemannian manifolds and translate our results to this setting.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt".
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We show that a particular free-by-cyclic group has CAT(0) dimension equal to 2, but CAT(-1) dimension equal to 3. We also classify the minimal proper 2-dimensional CAT(0) actions of this group; they correspond, up to scaling, to a 1-parameter family of locally CAT(0) piecewise Euclidean metrics on a fixed presentation complex for the group. This information is used to produce an infinite family of 2-dimensional hyperbolic groups, which do not act properly by isometries on any proper CAT(0) metric space of dimension 2. This family includes a free-by-cyclic group with free kernel of rank 6.
Resumo:
We give a case-free proof that the lattice of noncrossing partitions associated to any finite real reflection group is EL-shellable. Shellability of these lattices was open for the groups of type Dn and those of exceptional type and rank at least three.
Resumo:
Let T be the Cayley graph of a finitely generated free group F. Given two vertices in T consider all the walks of a given length between these vertices that at a certain time must follow a number of predetermined steps. We give formulas for the number of such walks by expressing the problem in terms of equations in F and solving the corresponding equations.