158 resultados para Grunwald
Resumo:
The bulk of the correspondence is between Susanne Sommer's parents, Max and Marga Grunwald, and their sponsors in the United States, Paul and Jean Lewinson. Also included are letters from Susanne Sommer's maternal grandparents prior to their deportation from Berlin in 1942 and from her paternal grandfather prior to and after his deportation from Stettin to a ghetto in Poland. A number of letters by Hugo Grunwald, Susanne Sommer's uncle, joined the British army after his immigration to England, are included as well.
Resumo:
Die Schlacht bei Tannenberg/Grunwald vom 15. Juli 1410 gehört zu den wichtigsten polnischen Nationalmythen. Der Beitrag beschäftigt sich mit dem Grunwaldmythos, der nach 1870 einen enormen Bedeutungsgewinn erfuhr und zu einem beliebten Sujet der polnischen Malerei und Literatur wurde. Inszenierung und Funktionen der Fünfhundertjahrfeiern werden diskutiert, die vom 15.-17. Juli 1910 in Krakau stattfanden. 150.000 Menschen nahmen an dieser Feier teil und machten sie damit zur größten nationalen Kundgebung im geteilten Polen überhaupt. Diese Feiern wurden selbst zu einem Erinnerungsort und zu einem Bezugspunkt von Jubiläumsfeiern. In Deutschland wurde der Sieg über die russischen Truppen bei Tannenberg im August 1914 mit der Schlacht von 1410 verknüpft. Der Sieg von 1914 spielte eine wichtige Rolle im Hindenburgkult, und das Nationaldenkmal Tannenberg wurde zum Ort großer deutschnationaler und nationalsozialistischer Feiern. Während die Schlacht nach 1945 im deutschen kollektiven Gedächtnis keine Rolle mehr spielte, wurde der Nationalmythos in der Volksrepublik Polen modifiziert und dazu benutzt, das neue Regime in die polnische nationale Tradition einzubinden, das alte Feindbild Deutschland und die Freundschaft mit der Sowjetunion zu befestigen.
Resumo:
J. S.
Resumo:
B.
Resumo:
"Jan Styka. Tadeusz Styka. Šest skizz k panoramatu "Bitva u Grunvaldu". Pohledy na bojiště grunwaldské dle informací Dra. T. Rzepnikowskeho z Lubawy jím popsané": 3d-12th leaves.
Resumo:
"Jan Styka. Tadeusz Styka. Sześć szkiców do obrazu kolistego (panoramy) 'Bitwa pod Grunwaldem.' Widoki z pola bitwy grunwaldzkiej, wykonane podług wskazówek dra. T. Rzepnikowskiego z Lubawy i przez tegoż opisane": 3d-12th leaves.
Resumo:
In this paper, a two-dimensional non-continuous seepage flow with fractional derivatives (2D-NCSF-FD) in uniform media is considered, which has modified the well known Darcy law. Using the relationship between Riemann-Liouville and Grunwald-Letnikov fractional derivatives, two modified alternating direction methods: a modified alternating direction implicit Euler method and a modified Peaceman-Rachford method, are proposed for solving the 2D-NCSF-FD in uniform media. The stability and consistency, thus convergence of the two methods in a bounded domain are discussed. Finally, numerical results are given.
Resumo:
In this paper, we consider the numerical solution of a fractional partial differential equation with Riesz space fractional derivatives (FPDE-RSFD) on a finite domain. Two types of FPDE-RSFD are considered: the Riesz fractional diffusion equation (RFDE) and the Riesz fractional advection–dispersion equation (RFADE). The RFDE is obtained from the standard diffusion equation by replacing the second-order space derivative with the Riesz fractional derivative of order αset membership, variant(1,2]. The RFADE is obtained from the standard advection–dispersion equation by replacing the first-order and second-order space derivatives with the Riesz fractional derivatives of order βset membership, variant(0,1) and of order αset membership, variant(1,2], respectively. Firstly, analytic solutions of both the RFDE and RFADE are derived. Secondly, three numerical methods are provided to deal with the Riesz space fractional derivatives, namely, the L1/L2-approximation method, the standard/shifted Grünwald method, and the matrix transform method (MTM). Thirdly, the RFDE and RFADE are transformed into a system of ordinary differential equations, which is then solved by the method of lines. Finally, numerical results are given, which demonstrate the effectiveness and convergence of the three numerical methods.
Resumo:
In this paper, A Riesz fractional diffusion equation with a nonlinear source term (RFDE-NST) is considered. This equation is commonly used to model the growth and spreading of biological species. According to the equivalent of the Riemann-Liouville(R-L) and Gr¨unwald-Letnikov(GL) fractional derivative definitions, an implicit difference approximation (IFDA) for the RFDE-NST is derived. We prove the IFDA is unconditionally stable and convergent. In order to evaluate the efficiency of the IFDA, a comparison with a fractional method of lines (FMOL) is used. Finally, two numerical examples are presented to show that the numerical results are in good agreement with our theoretical analysis.