983 resultados para Growth-promoting rhizobacteria
Resumo:
This work aimed to evaluate root colonization and interaction among isolates of rhizobacteria and eucalypt species. The method used to evaluate "in vitro" root colonization was able to indicate if the effect was benefic or deleterious allowing to pre-select isolates as potential growth promoter. There was interaction among isolates of rhizobacteria and Eucalyptus species for seed germinating and seedling growth. MF2 (Pseudomonas sp.) was the best rhizobacteria isolate for growth promotion of E. cloeziana e E. grandis. S1 (Bacillus subtilis) was the most effective for E. globulus, and Ca (Pseudomonas fulva), MF2 (Pseudomonas sp.), CIIb (Stenotrophomonas maltophilia) and S2 (B. subtilis) were the most promising isolates for the E. urophylla.
Resumo:
We investigated the effectiveness of Nitroxin inoculation on lead (Pb) and nutrient uptakes by little seed canary grass. The factors tested included inoculation (or not) with Nitroxin and different soil concentrations of Pb (0, 200, 400 and 800mgPbkg-1 soil). Increasing soil concentrations of Pb decreased stem, leaf and root dry weights. Shoot phosphorus concentrations increased in parallel with increasing soil Pb concentrations. Nitroxin inoculation did not alter the phosphorus concentration of the roots. The Pb translocation factor was >1 in inoculated treatments in the Pb soil concentration range of 200 to 400mgkg-1; the translocation factor for 800mgPbkg‑1 with no inoculation of Nitroxin was, however, <1. Our results indicated that the Pb bioaccumulation factor for little seed canary grass was <1, indicating that it is a Pb excluding plant.
Resumo:
Plant Growth Promoting Rhizobacteria (PGPR) has been used as a biofertilizer, bringing benefits to agriculture as Phosphorus Solubilizing Bacteria (PSB), indole-acetic acid (IAA) producers, and with other activites. The goal of this report was the identification of PGPR from soils under sugarcane crops by 16S rRNA sequencing, and the evaluation of the ability of phosphorus solubilizing and IAA production by biological assays. The isolates of this work were obtained from three areas of sugarcane crop from São Paulo State, Brazil. All isolates came from rhizosphere soil, and in a total of 60 isolates just 10 have showed high ability in phosphorus solubilizing. The selection of PSB may be done by phenotypic and/or genotypic characterization. Among ten isolates Enterobacter sp. (FJ890899), Entrobacter homaechei subsp. verschuerennii (FJ890998), Burkholderia sp. (FJ890895), and Labrys portucalensis (FJ890891) were able to IAA production. © 2006-2012 Asian Research Publishing Network (ARPN).
Resumo:
In the last decades, the use of plant growth-promoting rhizobacteria has become an alternative to improve crop production. Rhizobium leguminosarum biovar trifolii is one of the most promising rhizobacteria and is even used with non-legume plants. This study investigated in vitro the occurrence of plant growth-promoting characteristics in several indigenous R. leguminosarum biovar trifolii isolated from soils in the State of Rio Grande do Sul, Brazil. Isolates were obtained at 11 locations and evaluated for indoleacetic acid and siderophore production and inorganic phosphate solubilization. Ten isolates were also molecularly characterized and tested for antagonism against a phytopathogenic fungus and for plant growth promotion of rice seedlings. Of a total of 252 isolates, 59 produced indoleacetic acid, 20 produced siderophores and 107 solubilized phosphate. Some degree of antagonism against Verticillium sp. was observed in all tested isolates, reducing mycelial growth in culture broth. Isolate AGR-3 stood out for increasing root length of rice seedlings, while isolate ELD-18, besides increasing root length in comparison to the uninoculated control, also increased the germination speed index, shoot length, and seedling dry weight. These results confirm the potential of some strains of R. leguminosarum biovar trifolii as plant growth-promoting rhizobacteria.
Resumo:
Experiments were carried out under laboratory, growth chamber, and field conditions to evaluate the effect of Plant growth-promoting and bioprotecting rhizobacteria (PGPBR) seed treatment on seed pathogens, seed germination, plant growth, and grain yield of wheat (Triticum aestivum). Most of the PGPBR strongly reduced the recovery of the pathogens from infected wheat seeds. All treatments, except the chemical iprodione + thiram, significantly promoted plant growth over the nontreated control. Psudomonas putida biotype A (11) and P. agglomerans (14) showed the greatest effects. Field experiments, carried out at two locations, indicated that all treatments, except P. chlororaphis (42), significantly increased seedling emergence of wheat . In Pato Branco, PR, P. putida biotype A (11) and P. putida biotype B (44) presented the best results, both being superior to fungal biological and chemical treatments. In Passo Fundo P. putida biotype A (11) and P. putida biotype B (17 and 44) significantly improved yield over the nontreated control. Yield increases of these three PGPBR were similar to the chemical treatment iprodione + thiram. In Pato Branco, P. putida biotype A (11) and P. putida biotype B (17), as well as the chemical treatment, provided significant increase over the nontreated control. Yield increases by the PGPBR varied from 18% to 22% in Passo Fundo and from 27% to 28% in Pato Branco.
Resumo:
Araucaria angustifolia, a unique species of this genus that occurs naturally in Brazil, has a high socio-economic and environmental value and is critically endangered of extinction, since it has been submitted to intense predatory exploitation during the last century. Root-associated bacteria from A. angustifolia were isolated, selected and characterized for their biotechnological potential of growth promotion and biocontrol of plant pathogenic fungi. Ninety-seven strains were isolated and subjected to chemical tests. All isolates presented at least one positive feature, characterizing them as potential PGPR. Eighteen isolates produced indole-3-acetic acid (IAA), 27 were able to solubilize inorganic phosphate, 21 isolates were presumable diazotrophs, with pellicle formation in nitrogen-free culture medium, 83 were phosphatases producers, 37 were positive for siderophores and 45 endospore-forming isolates were antagonistic to Fusarium oxysporum, a pathogen of conifers. We also observed the presence of bacterial strains with multiple beneficial mechanisms of action. Analyzing the fatty acid methyl ester (FAME) and partial sequencing of the 16S rRNA gene of these isolates, it was possible to characterize the most effective isolates as belonging to Bacillaceae (9 isolates), Enterobacteriaceae (11) and Pseudomonadaceae (1). As far as we know, this is the first study to include the species Ewingella americana as a PGPR. (C) 2011 Elsevier GmbH. All rights reserved.
Resumo:
Background and aims Endophytic and rhizospheric environments differ in many respects, leading to the presence of different bacterial communities at each site. However, microorganisms such as enterobacteria can be found both within plants and in the surrounding soil. Bacteria must present differences in the traits that affect such environments in order to successfully colonise them. The present study compared the plant growth-promoting potential of diazotrophic enterobacteria isolated from the rhizosphere and from within surface-disinfected plants. Methods A total of 46 diazotrophic enterobacterial strains (21 rhizospheric and 25 putatively endophytic) belonging to the Klebsiella and Enterobacter genera, which are prevalent in sugar cane plantations, were isolated from the rhizosphere and from surface-disinfected plants. Their ability to synthesise amino acids using combined nitrogen obtained from nitrogen fixation, and their ability to synthesise indole-3-acetic acid (IAA) were determined by high performance liquid chromatography. Endogenous ethylene production by the bacteria was measured using gas chromatography, and biocontrol of phytopathogenic fungi was determined qualitatively using a dual culture technique. Results The putative endophytes released significantly higher amounts of amino acids than the rhizospheric bacteria, whilst the latter produced higher quantities of ethylene and were more actively antagonistic to fungi. Both types of bacteria released similar amounts of IAA. Conclusion Endophytic and rhizospheric bacteria differ in their capacity to release plant growth-promoting substances, which may be a reflection of their adaptations and an indication of their potential impact on their natural environment.
Resumo:
Calf serum and fetal bovine serum present great variability as to its growth promoting efficiency (GPE). As supplement of culture media to cultivate cells of animal origin they stimulate the "in vitro" multiplication and maintain cell viability. When fourteen lots of calf sera of variable GPE had the total protein contents as well as the percentages of serum fractions determined, no significant differences that could possibly explain the variability of the GPE were observed. Evaluation of the antiproteolytic activity of nineteen lots of calf serum and eighteen serum lots of younger calves showed that the former exhibited lower antiproteolytic titers (1:40 to 1:80) than the latter (1:80 to 1:160). Twelve lots of fetal bovine serum studied in parallel, showed the highest concentration of antiproteolytic factors, with titers equal to 1:320. Sera of bovine origin, but not fetal sera, are usually heat-inactivated, what was demonstrated to be responsible for the decrease of the antiproteolytic activity of 75% of the lots tested. This could explain the inability of certain heat-inactivated sera in promoting multiplication of some cells "in vitro", as verified with primary monkey kidney cells. The results obtained in this study indicated the convenience of submiting each lot of serum to be introduced in cell culture to previous determination of its characteristics, such as growth promoting efficiency, antiproteolytic activity and also toxicity, absence of extraneous agents, etc., in order to minimize the possibility of using serum lots of questionable quality, thus preventing not only the loss of cell lines, but also undesirable and sometimes expensive delays.
Resumo:
El uso de microorganismos como inoculantes para incrementar la disponibilidad y toma de nutrientes por parte de los cultivos, es una nueva tecnología que ha dado buenos resultados, observándose un incremento en la emergencia, vigor, mayor desarrollo en la parte aérea y de raíces, registrándose aumentos considerables de los rendimientos en cultivos de interés comercial. Esto es debido a que los microorganismos PGPR (Plant Growth promoting rhizobacteria) sintetizan ciertas sustancias reguladoras del crecimiento como giberelinas, citoquininas y auxinas; las cuales estimulan la densidad y longitud de los pelos radicales, aumentando así la cantidad y longitud de las raíces de los vegetales. Así, se incrementa la capacidad de absorción de agua y nutrientes, haciendo que las plantas sean más vigorosas, productivas y tolerantes a condiciones climáticas adversas, como sequías o heladas. Otro factor benéfico es que ciertos microorganismos solubilizan nutrientes poco móviles en el suelo como el caso del fósforo, segundo nutriente, después del nitrógeno en importancia para el crecimiento de los cultivos. Estos microorganismos también tienen una función muy importante en el control natural de agentes patógenos, a través de la inducción del sistema de defensa en las plantas, aumentando su resistencia a enfermedades, a través de la producción de compuestos bacterianos como antibióticos y sideróforos. Los variados mecanismos mediante los cuales la acción PGPR se lleva a cabo no son plenamente conocidos y, por lo tanto, es necesario determinar con precisión su efecto particular en la biología de la planta beneficiada. Las plantas aromáticas y medicinales inoculadas con microorganismos (rizobacterias) registran un incremento en varios parámetros de crecimiento vegetal (peso fresco parte aérea, peso seco de raíz, número de hojas, etc) y en el rendimiento de aceite esencial (AE). El aumento de la síntesis, y la variación de los porcentajes relativos de los componentes principales de AE en plantas aromáticas, como efecto de la inoculación, podría considerarse como una respuesta defensiva de la planta frente a la colonización de microorganismos dado que varios AE poseen propiedades antimicrobianas. El incremento de estos metabolitos también se ha registrado como respuesta frente a la herbivoría. En el presente proyecto se propone dilucidar la existencia de una relación entre las defensas inducidas por rizobacterias con la producción de metabolitos secundarios en plantas aromaticas y medicinales. The use of microorganisms as inoculants to increase the availability and nutrient uptake by crops, is a new technology that has been successfully applied, with an increase in the emergence, vigor, greater development in the shoot and roots, recording significant increases in yields of crop with commercial interest. This is because microorganisms PGPR (Plant Growth Promoting rhizobacteria) synthesize certain growth regulating substances such as gibberellins, cytokinins and auxins, which stimulate the density and length of root hairs, increasing the number and length of roots. Thus, increase the capacity of absorbing water and nutrients, make the plants more vigorous, productive and tolerant to adverse climatic conditions such as drought or frost.Another beneficial factor is that some microorganisms solubilize nutrients mobile in the soil as the case of phosphorus, second nutrient after nitrogen important for plant growth. These organisms also have an important role in the natural control of pathogens through the induction of the plants defense system, increasing their resistance to disease through the production of compounds such as antibiotics and bacterial siderophores. The various mechanisms by which PGPR action takes place are not fully known and therefore it is necessary to accurately determine its particular effect on the biology of the specific plant benefit. Aromatic and medicinal plants inoculated with microorganisms (rhizobacteria) recorded an increase in several parameters of plant growth (shoot fresh weight, root dry weight, leaf number, etc) and essential oil yield (AE). The increase in the biosynthesis, and changes in the relative percentages of the main components of AE in aromatic plants inoculated with rizobacterias, could be regarded as a plant defense response against microbial colonization, since several AE have antimicrobial properties. The increase of these metabolites have also been recorded as a response to herbivory.
Resumo:
Plant growth and development are particularly sensitive to changes in the light environment and especially to vegetational shading. The shade-avoidance response is mainly controlled by the phytochrome photoreceptors. In Arabidopsis, recent studies have identified several related bHLH class transcription factors (PIF, for phytochrome-interacting factors) as important components in phytochrome signaling. In addition to a related bHLH domain, most of the PIFs contain an active phytochrome binding (APB) domain that mediates their interaction with light-activated phytochrome B (phyB). Here we show that PIF4 and PIF5 act early in the phytochrome signaling pathways to promote the shade-avoidance response. PIF4 and PIF5 accumulate to high levels in the dark, are selectively degraded in response to red light, and remain at high levels under shade-mimicking conditions. Degradation of these transcription factors is preceded by phosphorylation, requires the APB domain and is sensitive to inhibitors of the proteasome, suggesting that PIF4 and PIF5 are degraded upon interaction with light-activated phyB. Our data suggest that, in dense vegetation, which is rich in far-red light, shade avoidance is triggered, at least partially, as a consequence of reduced phytochrome-mediated degradation of transcription factors such as PIF4 and PIF5. Consistent with this idea, the constitutive shade-avoidance phenotype of phyB mutants partially reverts in the absence of PIF4 and PIF5
Resumo:
Two bacterial strains that amplified part of the nifH gene, RP1p and RP2p, belonging to the genus Enterobacter and Serratia, were isolated from the rhizoplane of Lupinus albescens. These bacteria are Gram-negative, rod-shaped, motile, facultative anaerobic, and fast-growing; the colonies reach diameters of 3-4 mm within 24 h of incubation at 28 ºC. The bacteria were also able to grow at temperatures as high as 40 ºC, in the presence of high (2-3 % w/v) NaCl concentrations and pH 4 -10. Strain RP1p was able to utilize 10 of 14 C sources, while RP2p utilized nine. The isolates produced siderophores and indolic compounds, but none of them was able to solubilize phosphate. Inoculation of L. albescens with RP1p and RP2p strains resulted in a significant increase in plant dry matter, indicating the plant-growth-promoting abilities of these bacteria.
Resumo:
Maize is among the most important crops in the world. This plant species can be colonized by diazotrophic bacteria able to convert atmospheric N into ammonium under natural conditions. This study aimed to investigate the effect of inoculation of the diazotrophic bacterium Herbaspirillum seropedicae (ZAE94) and isolate new strains of plant growth-promoting bacteria in maize grown in Vitória da Conquista, Bahia, Brazil. The study was conducted in a greenhouse at the Experimental Area of the Universidade Estadual do Sudoeste da Bahia. Inoculation was performed with peat substrate, with and without inoculation containing strain ZAE94 of H. seropedicae and four rates of N, in the form of ammonium sulfate (0, 60, 100, and 140 kg ha-1 N). After 45 days, plant height, dry matter accumulation in shoots, percentage of N, and total N (NTotal) were evaluated. The bacteria were isolated from root and shoot fragments of the absolute control; the technique of the most probable number and identification of bacteria were used. The new isolates were physiologically characterized for production of indole acetic acid (IAA) and nitrogenase activity. We obtained 30 isolates from maize plants. Inoculation with strain ZAE94 promoted an increase of 14.3 % in shoot dry mass and of 44.3 % in NTotal when associated with the rate 60 kg ha-1 N. The strains N11 and N13 performed best with regard to IAA production and J06, J08, J10, and N15 stood out in acetylene reduction activity, demonstrating potential for inoculation of maize.
Resumo:
Plant species that naturally occur in the Brazilian Caatinga(xeric shrubland) adapt in several ways to these harsh conditions, and that can be exploited to increase crop production. Among the strategic adaptations to confront low water availability, desiccation tolerance stands out. Up to now, the association of those species with beneficial soil microorganisms is not well understood. The aim of this study was to characterize Tripogon spicatusdiazotrophic bacterial isolates from the Caatingabiome and evaluate their ability to promote plant growth in rice. Sixteen bacterial isolates were studied in regard to their taxonomic position by partial sequencing of the 16S rRNA gene, putative diazotrophic capacity, in vitro indole-acetic acid (IAA) production and calcium phosphate solubilization, metabolism of nine different C sources in semi-solid media, tolerance to different concentrations of NaCl to pHs and intrinsic resistance to nine antibiotics. Finally, the ability of the bacterial isolates to promote plant growth was evaluated using rice (Oryza sativa) as a model plant. Among the 16 isolates evaluated, eight of them were classified as Enterobacteriaceae members, related to Enterobacter andPantoeagenera. Six other bacteria were related toBacillus, and the remaining two were related toRhizobiumand Stenotrophomonas.The evaluation of total N incorporation into the semi-solid medium indicated that all the bacteria studied have putative diazotrophic capacity. Two bacteria were able to produce more IAA than that observed for the strain BR 11175Tof Herbaspirillum seropedicae.Bacterial isolates were also able to form a microaerophilic pellicle in a semi-solid medium supplemented with different NaCl concentrations up to 1.27 mol L-1. Intrinsic resistance to antibiotics and the metabolism of different C sources indicated a great variation in physiological profile. Seven isolates were able to promote rice growth, and two bacteria were more efficient than the reference strainAzospirillum brasilense, Ab-V5. The results indicate the potential of T. spicatus as native plant source of plant growth promoting bacteria.
Resumo:
We report the complete genome sequence of the free-living bacterium Pseudomonas protegens (formerly Pseudomonas fluorescens) CHA0, a model organism used in plant-microbe interactions, biological control of phytopathogens, and bacterial genetics.
Resumo:
Tenascin-C is an adhesion-modulating extracellular matrix molecule that is highly expressed in tumor stroma and stimulates tumor cell proliferation. Adhesion of T98G glioblastoma cells to a fibronectin substratum is inhibited by tenascin-C. To address the mechanism of action, we performed a RNA expression analysis of T89G cells grown in the presence or absence of tenascin-C and found that tenascin-C down-regulates tropomyosin-1. Upon overexpression of tropomyosin-1, cell spreading on a fibronectin/tenascin-C substratum was restored, indicating that tenascin-C destabilizes actin stress fibers through down-regulation of tropomyosin-1. Tenascin-C also increased the expression of the endothelin receptor type A and stimulated the corresponding mitogen-activated protein kinase signaling pathway, which triggers extracellular signal-regulated kinase 1/2 phosphorylation and c-Fos expression. Tenascin-C additionally caused down-regulation of the Wnt inhibitor Dickkopf 1. In consequence, Wnt signaling was enhanced through stabilization of beta-catenin and stimulated the expression of the beta-catenin target Id2. Finally, our in vivo data derived from astrocytoma tissue arrays link increased tenascin-C and Id2 expression with high malignancy. Because increased endothelin and Wnt signaling, as well as reduced tropomyosin-1 expression, are closely linked to transformation and tumorigenesis, we suggest that tenascin-C specifically modulates these signaling pathways to enhance proliferation of glioma cells.