988 resultados para Growth suppression


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background/Aims: Hepatocellular carcinoma is a leading cause of global cancer mortality, with standard chemotherapy being minimally effective in prolonging survival. We investigated if combined targeting of vascular endothelial growth factor protein and expression might affect hepatocellular carcinoma growth and angiogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Melanoma is known to be highly resistant to chemotherapy. Treatment with high dose IL-2 has shown significant clinical benefit in a minority of metastatic melanoma patients and has lead to long term survival in a few cases. However, this treatment is associated with excessive multiorgan toxicities, which severely limits its use. We hypothesize that one mechanism of effective IL-2 therapy is through the direct upregulation of IL-24 production in melanoma tumors and subsequent IL-24 mediated tumor growth suppression. Five melanoma cell lines were treated with high dose recombinant hIL-2 at 1000U/ml. Three of the cell lines (A375, WM1341, WM793) showed statistically significant increases in their levels of IL-24 protein when measured by Western blotting, while the remaining two lines (WM35, MeWo) remained negative for IL-24 message and protein. This increase in IL-24 was abolished by either preincubating with an anti-IL-2 antibody or by blocking the IL-2 receptor directly with antibodies against the receptor chains. We also demonstrated by ELISA that these three cell lines secrete IL-24 protein in higher amounts when stimulated with IL-2 than do untreated cells. These cells were found to contain IL-2R beta and gamma message by RT-PCR and also expressed higher levels of IL-24 when treated with IL-15, which shares the IL-2R beta chain. Thus we propose that IL-2 is signaling through IL-2R beta on some melanoma cells to upregulate IL-24 protein expression. To address the biological function of IL-2 in melanoma cells, five cell lines were treated with IL-2 and cell viability determined. Cell growth was found to be significantly decreased by day 4 in the IL-24 positive cell lines while no effect on growth was seen in WM35 or MeWo. Incubating the cells with anti-IL-24 antibody or transfecting with IL-24 siRNA effectively negated the growth suppression seen with IL-2. These data support our hypothesis that in addition to its immunotherapeutic effects, IL-2 also acts directly on some melanoma tumors and that the IL-24 and IL-2R beta status of a tumor may be useful in predicting patient response to high dose IL-2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Arginine metabolism in tumor cell lines can be influenced by various cytokines, including recombinant human interferon-gamma (rIFN-gamma), a cytokine that shows promising clinical activity in epithelial ovarian cancer (EOC). METHODS: We examined EOC cell lines for the expression of arginase in an enzymatic assay and for transcripts of arginase I and II, inducible nitric oxide synthase (iNOS), and indoleamine 2,3-dioxygenase (IDO) by reverse transcription-polymerase chain reaction. The effects of rIFN-gamma on arginase activity and on tumor cell growth inhibition were determined by measuring [3H]thymidine uptake. RESULTS: Elevated arginase activity was detected in 5 of 8 tumor cell lines, and analysis at the transcriptional level showed that arginase II was involved but arginase I was not. rIFN-gamma reduced arginase activity in 3 EOC cell lines but increased activity in the 2008 cell line and its platinum-resistant subline, 2008.C13. iNOS transcripts were not detected in rIFN-gamma-treated or untreated cell lines. In contrast, IDO activity was induced or increased by rIFN-gamma. Suppression of arginase activity by rIFN-gamma in certain cell lines suggested that such inhibition might contribute to its antiproliferative effects. However, supplementation of the medium with polyamine pathway products did not interfere with the growth-inhibitory effects of rIFN-gamma EOC cells. CONCLUSIONS: Increased arginase activity, specifically identified with arginase II, is present in most of the tested EOC cell lines. rIFN-gamma inhibits or stimulates arginase activity in certain EOC cell lines, though the decrease in arginase activity does not appear to be associated with the in vitro antiproliferative activity of rIFN-gamma. Since cells within the stroma of EOC tissues could also contribute to arginine metabolism following treatment with rIFN-gamma or rIFN-gamma-inducers, it would be helpful to examine these effects in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The p53 gene is known to be one of the most commonly mutated genes in human cancers. Many squamous cell carcinomas of the head and neck (SCCHNs) have been shown to contain nonfunctional p53 as well. The use of p53-mediated gene therapy to treat such cancers has become an intensive area of research. Although there have been varied treatment responses to p53 gene therapy, the role that endogenous p53 status plays in this response has not been thoroughly examined. Because of this, the hypothesis of this study examined the role that the endogenous p53 status of cells plays in their response to p53 gene therapy. To test this, an adenoviral vector containing p53 (p53FAd) was administered to three squamous cell carcinoma lines with varied endogenous p53. The SCC9 cell line demonstrates no p53 protein expression, the SCC4 cell line displays overexpression of a mutant p53 protein, and the 1986LN cell line displays low to no expression of wild-type p53 protein as a consequence of human papillomavirus infection. After treatment with p53FAd, the cells were examined for evidence of exogenous p53 expression, growth suppression, alterations in cellular proteins, G1 growth arrest, apoptosis, and differentiation state. Each cell line exhibited exogenous p53 protein. Growth suppression was seen most prominently in the SCC9 cells, to some extent in the 1986LN cells, and little was seen with the SCC4 cells. WAF1/p21 protein was induced in all three cell lines, while PCNA, bcl-2, and bax expression was not significantly affected in any of the lines. Apoptosis developed first in SCC9 cells, next in 1986LN cells, with little seen in the SCC4 cells. The SCC9 line was the only line to show significant GI growth arrest. No significant differences were observed in the overall expression of differentiation markers, aside from increased keratin 13 mRNA levels in all three lines indicating a possible tendency toward differentiation. This study indicates that the endogenous p53 status of squamous cell carcinomas appears to play a critical role in determining the response to p53 adenoviral gene therapy. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adenovirus type 5 E1A (abbreviated E1A) has previously been known as an immortalization oncogene because E1A is required for transforming oncogenes, such as ras and E1B, to transform cells in primary cultures. However, E1A has also been shown to downregulate the overexpression of the Her-2/neu oncogene, resulting in suppression of transformation and tumorigenesis induced by that oncogene. In addition, E1A is able to promote apoptosis induced by anticancer drugs, irradiation, and serum deprivation. Many tyrosine kinases, such as the EGF receptor, Her-2/Neu, Src, and Axl are known to play a role in oncogenic signals in transformed cells. To study the mechanism underlying the E1A-mediated tumor-suppressing function, we exploited a modified tyrosine kinase profile assay (Proc. Natl. Acad. Sci, 93, 5958–5962, 1996) to identify potential tyrosine kinases regulated by E1A. RT-PCR products were synthesized with two degenerate primers derived from the conserved motifs of various tyrosine kinases. A tyrosine kinase downregulated by E1A was identified as Axl by analyzing the Alu I-digested RT-PCR products. We isolated the DNA fragment of interest, and found that E1A negatively regulated the expression of the transforming receptor tyrosine kinase Axl at the transcriptional level. To study whether downregulation of the Axl receptor is involved in E1A-mediated growth suppression, we transfected axl cDNA into E1A-expressing cells (ip1-E1A) to establish cells that overexpressed Axl (ip1-E1A-Axl). The Axl ligand Gas6 triggered a greater mitogenic effect in these ip1-E1A-Axl cells than in the control cells ip1-E1A and protected the Axl-expressing cells from serum deprivation-induced apoptosis. Further study showed that Akt is required for Axl-Gas6 signaling to prevent ip1-E1A-Axl cells from serum deprivation-induced apoptosis. These results indicate that downregulation of the Axl receptor by E1A is involved in E1A-mediated growth suppression and E1A-induced apoptosis, and thereby contributes to E1A's anti-tumor activities. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deletions of all or part of chromosome 10 are the most common genetic alterations in high-grade gliomas. The PTEN gene (also called MMAC1 and TEP1) maps to chromosome region 10q23 and has been implicated as a target of alteration in gliomas and also in other cancers such as those of the breast, prostate, and kidney. Here we sought to provide a functional test of its candidacy as a growth suppressor in glioma cells. We used a combination of Northern blot analysis, protein truncation assays, and sequence analysis to determine the types and frequency of PTEN mutations in glioma cell lines so that we could define appropriate recipients to assess the growth suppressive function of PTEN by gene transfer. Introduction of wild-type PTEN into glioma cells containing endogenous mutant alleles caused growth suppression, but was without effect in cells containing endogenous wild-type PTEN. The ectopic expression of PTEN alleles, which carried mutations found in primary tumors and have been shown or are expected to inactivate its phosphatase activity, caused little growth suppression. These data strongly suggest that PTEN is a protein phosphatase that exhibits functional and specific growth-suppressing activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activation of the p53 tumor suppressor protein has been demonstrated to block cell growth by inducing either a transient cell cycle arrest or programmed cell death (apoptosis). Although evidence exists linking p53’s function as an activator of transcription to its ability to effect cell cycle arrest, the role of this activity in the induction of apoptosis remains unclear. To gain insight into the molecular mechanisms underlying p53-mediated antiproliferative pathways, a study was initiated to explore the functions of a putative p53 signaling domain. This region of the human p53 protein is localized between amino acids 61 and 94 (out of 393) and is noteworthy in that it contains five repeats of the sequence PXXP (where P represents proline and X any amino acid). This motif has been shown to play a role in signal transduction via its SH3 domain binding activity. A p53 cDNA deletion mutant (ΔproAE), which lacks this entire proline-rich domain (deleted for amino acids 62–91), was created and characterized for a variety of p53 functions. The entire domain has been shown to be completely dispensable for transcriptional activation. On the other hand, this deletion of the p53 proline-rich domain impairs p53’s ability to suppress tumor cell growth in culture. Amino acid substitution mutations at residues 22 and 23 of p53 (eliminates transcriptional activity) also impair p53-mediated inhibition of cell growth in culture. Unlike wild-type p53, the ΔproAE mutant cDNA can be stably expressed in tumor derived cell lines with few immediate detrimental effects. These cells express physiologic levels of p53 protein that are induced normally in response to DNA damage, indicating that removal of the proline-rich domain does not disrupt p53’s upstream regulation by DNA damage. These data indicate that, in addition to the transcriptional activation domain, the p53 proline-rich domain plays a critical role in the transmission of antiproliferative signals downstream of the p53 protein and may link p53 to a direct signal transduction pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

p16ink4 has been implicated as a tumor suppressor that is lost from a variety of human tumors and human cell lines. p16ink4 specifically binds and inhibits the cyclin-dependent kinases 4 and 6. In vitro, these kinases can phosphorylate the product of the retinoblastoma tumor suppressor gene. Thus, p16ink4 could exert its function as tumor suppressor through inhibition of phosphorylation and functional inactivation of the retinoblastoma protein. Here we show that overexpression of p16ink4 in certain cell types will lead to an arrest in the G1 phase of the cell cycle. In addition, we show that p16ink4 can only suppress the growth of human cells that contain functional pRB. Moreover, we have compared the effect of p16ink4 expression on embryo fibroblasts from wild-type and RB homozygous mutant mice. Wild-type embryo fibroblasts are inhibited by p16ink4, whereas the RB nullizygous fibroblasts are not. These data not only show that the presence of pRB is crucial for growth suppression by p16ink4 but also indicate that the pRB is the critical target acted upon by cyclin D-dependent kinases in the G1 phase of the cell cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transient expression of the retinoblastoma protein (Rb) regulates the transcription of a variety of growth-control genes, including c-fos, c-myc, and the gene for transforming growth factor beta 1 via discrete promoter sequences termed retinoblastoma control elements (RCE). Previous analyses have shown that Sp1 is one of three RCE-binding proteins identified in nuclear extracts and that Rb functionally interacts with Sp1 in vivo, resulting in the "superactivation" of Sp1-mediated transcription. By immunochemical and biochemical criteria, we report that an Sp1-related transcription factor, Sp3, is a second RCE-binding protein. Furthermore, in transient cotransfection assays, we report that Rb "superactivates" Sp3-mediated RCE-dependent transcription in vivo and that levels of superactivation are dependent on the trans-activator (Sp1 or Sp3) studied. Using expression vectors carrying mutated Rb cDNAs, we have identified two portions of Rb required for superactivation: (i) a portion of the Rb "pocket" (amino acids 614-839) previously determined to be required for physical interactions between Rb and transcription factors such as E2F-1 and (ii) a novel amino-terminal region (amino acids 140-202). Since both of these regions of Rb are targets of mutation in human tumors, our data suggest that superactivation of Sp1/Sp3 may play a role in Rb-mediated growth suppression and/or the induction of differentiation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three genes encoding for fungal cell wall degrading enzymes (CWDE), ech42, nag7O and gluc78 from the biocontrol fungus Trichoderma atroviride were transformed into rice mediated by Agrobacterium tumefaciens singly and in all possible combinations. A total of more than 1800 independently regenerated plantlets in seven different populations (for each of the three genes and each of the four gene combinations) were obtained. Our data indicated that gluc78 gene had negative effects on transformation frequency and plant growth. Some regenerated plants with gluc78 gene were stunted; spontaneously produced brown specks; could not tassel. The combination with either one of the two other genes (ech42, nag70) present in the same T-DNA region reduced the negative effect of gluc78 on plant growth. These results indicated that expression of several genes in one T-DNA region interfered with each other and expression of exogenous gene in recipient plant was a complex behavior. (c) 2007 Published by Elsevier Ireland Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There is little doubt that both mammalian and teleost growth hormones can accelerate growth and increase food conversion efficiency in all commonly-reared species of salmonid fish. In those vertebrates that have been closely studied (predominantly mammals), the pituitary hormone somatotropin (GH or growth hormone) is a prime determinant of somatic growth. The hormone stimulates protein biosynthesis and tissue growth, enhances lipid utilization and lipid release from the adipose tissues (a protein-sparing effect) and suppresses the peripheral utilization of glucose. The present study is a prerequisite for future work on growth hormone physiology in salmonids and should contribute to our understanding of the mechanisms of growth suppression in stressed fish. Plasma growth hormone (GH) levels were measured in rainbow trout using a radioimmunoassay developed against chinook salmon growth hormone.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Perfluorooctane sulfonate (PFOS) is widely distributed and persistent in the environment and wildlife. The main aim of this study was to investigate the impact of long-term exposure to low concentrations of PFOS in zebrafish. Zebrafish fry (F-0, 14d post-fertilization, dpf) were exposed via the water for 70d to 0 (control), 10, 50 and 250 mu g L-1 PFOS, followed by a further 30d to assess recovery in clean water. The effects on survival and growth parameters and liver histopathology were assessed. Although growth suppression (weight and length) was observed in fish treated with high concentrations PFOS during the exposure period, no mortality was observed throughout the 70d experiment. Embryos and larvae (F-1) derived from maternal exposure suffered malformation and mortality. Exposure to 50 and 250 mu g L-1 PFOS could inhibit the growth of the gonads (GSI) in the female zebrafish. Histopathological alterations, primary with lipid droplets accumulation, were most prominently seen in the liver of males and the changes were not reversible, even after the fish were allowed to recover for 30d in clean water. The triiodothyronine (T-3)) levels were not significantly changed in any of the exposure groups. Hepatic vitellogenin (VTG) gene expression was significantly up-regulated in both male and female zebrafish, but the sex ratio was not altered. The overall results suggested that lower concentrations of PFOS in maternal exposure could result in offspring deformation and mortality. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Brachiaria decumbens vem se tornando uma das plantas daninhas mais freqüentes na infestação de cafezais em formação, pois além de sua elevada agressividade e dificuldade de controle, está ocorrendo expansão das áreas cafeeiras para locais anteriormente ocupados por pastagens. Objetivou-se neste trabalho avaliar os efeitos desta planta daninha, em densidades crescentes, sobre o desenvolvimento inicial de mudas de café (Coffea arabica L. cv. Catuaí Amarelo). O experimento foi conduzido em condições semi-controladas, sem limitação de água. Uma muda de café foi transplantada em caixa de amianto com capacidade para 70 L, preenchida com terra coletada da camada arável de um Latossolo Vermelho. Os tratamentos constaram de diferentes densidades de transplante de capim-braquiária, a saber: 0, 4, 8, 12, 16, 20, 24, 36, 48 e 60 plantas m-2. O ensaio foi conduzido por um período experimental de 120 dias após o plantio (DAP). Todas as características analisadas foram afetadas negativamente pela interferência da planta daninha, mas as que se mostraram mais sensíveis a essa interferência foram à área foliar e a biomassa seca das folhas. Houve redução de 41,8% na área foliar do cafeeiro quando conviveu com o capim-braquiária a partir da densidade de 8 plantas m-2, chegando a 68,7% na densidade de 60 plantas m-2. Também a partir da densidade de 8 plantas m-2, a redução na biomassa seca das folhas em relação à testemunha foi de 41,4% e na densidade de 60 plantas m-2 chegou a 72,8%. Brachiaria decumbens, a partir da densidade de 8 plantas m-2, interfere negativamente sobre as mudas de café até os 120 DAP.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This review concerns the phenomenon of heterogeneous growth (Het-G) in fish. Het-G is characterized by different growth rates between conspecifics. Although genetic determination on Het-G is recognized, grouping increases the difference in size between conspecifics. This review focuses on population factors and the mechanisms underlying the socially mediated Het-G are summarized and discussed. The aim of this paper is to arrive at a general statement explaining why grouping decreases mean growth and why it suppresses growth only in some individuals. The mechanisms described are: a) food competition, b) chemical factors released by conspecifics, and c) social stress. Social stress is analyzed in terms of the effect on appetite, digestive processes and metabolism. It is proposed that the predominant mechanism promoting socially mediated growth suppression is related to the social habit of the species. The biological significance of growth heterogeneity in fish is also discussed. Growth variability is suggested as an adaptative strategy to optimize survival of the population in a restricted space.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Plant invertases are sucrolytic enzymes that are essential for the regulation of carbohydrate metabolism and source–sink relationships. While their activity has been well documented during abiotic and biotic stresses, the role of proteinaceous invertase inhibitors in regulating these changes is unknown. Here, we identify a putative Nicotiana attenuata cell wall invertase inhibitor (NaCWII) which is strongly up-regulated in a jasmonate (JA)-dependent manner following simulated attack by the specialist herbivore Manduca sexta. To understand the role of NaCWII in planta, we silenced its expression by RNA interference and measured changes in primary and secondary metabolism and plant growth following simulated herbivory. NaCWII-silenced plants displayed a stronger depletion of carbohydrates and a reduced capacity to increase secondary metabolite pools relative to their empty vector control counterparts. This coincided with the attenuation of herbivore-induced CWI inhibition and growth suppression characteristic of wild-type plants. Together our findings suggest that NaCWII may act as a regulatory switch located downstream of JA accumulation which fine-tunes the plant's balance between growth and defense metabolism under herbivore attack. Although carbohydrates are not typically viewed as key factors in plant growth and defense, our study shows that interfering with their catabolism strongly influences plant responses to herbivory.