973 resultados para Growth promotion tests


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to evaluate isolates of Trichoderma harzianum regarding biocontrol of common bean seed-borne pathogens, plant growth promotion, and rhizosphere competence. Five isolates of T. harzianum were evaluated and compared with commercial isolate (Ecotrich), Carboxin+Thiram, and an absolute control. Bean seeds of the cultivar Jalo Precoce, contaminated with Aspergillus, Cladosporium, and Sclerotinia sclerotiorum, were microbiolized with antagonists, and seed health tests were carried out. Isolates were evaluated on autoclaved substrate and in field conditions. Ten days after sowing (DAS), plant length was measured. To test rhizosphere competence, isolates were applied in boxes containing autoclaved washed sand, and root colonization was evaluated at 10 DAS, using five plants per box. The most effective isolates in the seed health tests were: CEN287 and CEN289 to control Aspergillus; the commercial isolate to control Cladosporium; and CEN287 and CEN316 to control S. sclerotiorum. Isolates CEN289 and CEN290 promoted bean growth in greenhouse and field. Seed treatment with T. harzianum reduces the incidence of Aspergillus, Cladosporium, and S. sclerotiorum in 'Jalo Precoce' common bean seeds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Twenty endophytic bacteria were isolated from the meristematic tissues of three varieties of strawberry cultivated in vitro, and further identified, by FAME profile, into the genera Bacillus and Sphingopyxis. The strains were also characterized according to indole acetic acid production, phosphate solubilization and potential for plant growth promotion. Results showed that 15 strains produced high levels of IAA and all 20 showed potential for solubilizing inorganic phosphate. Plant growth promotion evaluated under greenhouse conditions revealed the ability of the strains to enhance the root number, length and dry weight and also the leaf number, petiole length and dry weight of the aerial portion. Seven Bacillus spp. strains promoted root development and one strain of Sphingopyxis sp. promoted the development of plant shoots. The plant growth promotion showed to be correlated to IAA production and phosphate solubilization. The data also suggested that bacterial effects could potentially be harnessed to promote plant growth during seedling acclimatization in strawberry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vitro propagation of pineapple produces uniform and disease-free plantlets, but requires a long period of acclimatization before transplanting to the field. Quicker adaptation to the ex vitro environment and growth acceleration of pineapple plantlets are prerequisites for the production of a greater amount of vigorous, well-rooted planting material. The combination of humic acids and endophytic bacteria could be a useful technological approach to reduce the critical period of acclimatization. The aim of this study was to evaluate the initial performance of tissue-cultured pineapple variety Vitória in response to application of humic acids isolated from vermicompost and plant growth-promoting bacteria (Burkholderia spp.) during greenhouse acclimatization. The basal leaf axils were treated with humic acids while roots were immersed in bacterial medium. Humic acids and bacteria application improved shoot growth (14 and 102 %, respectively), compared with the control; the effect of the combined treatment was most pronounced (147 %). Likewise, humic acids increased root growth by 50 %, bacteria by 81 % and the combined treatment by 105 %. Inoculation was found to significantly increase the accumulation of N (115 %), P (112 %) and K (69 %) in pineapple leaves. Pineapple growth was influenced by inoculation with Burkholderia spp., and further improved in combination with humic acids, resulting in higher shoot and root biomass as well as nutrient contents (N 132 %, P 131 %, K 80 %) than in uninoculated plantlets. The stability and increased consistency of the host plant response to bacterization in the presence of humic substances indicate a promising biotechnological tool to improve growth and adaptation of pineapple plantlets to the ex vitro environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Food security depends on enhancing production and reducing loss to pests and pathogens. A promising alternative to agrochemicals is the use of plant growth-promoting rhizobacteria (PGPR), which are commonly associated with many, if not all, plant species. However, exploiting the benefits of PGPRs requires knowledge of bacterial function and an in-depth understanding of plant-bacteria associations. Motility is important for colonization efficiency and microbial fitness in the plant environment, but the mechanisms employed by bacteria on and around plants are not well understood. We describe and investigate an atypical mode of motility in Pseudomonas fluorescens SBW25 that was revealed only after flagellum production was eliminated by deletion of the master regulator fleQ. Our results suggest that this ‘spidery spreading’ is a type of surface motility. Transposon mutagenesis of SBW25ΔfleQ (SBW25Q) produced mutants, defective in viscosin production, and surface spreading was also abolished. Genetic analysis indicated growth-dependency, production of viscosin, and several potential regulatory and secretory systems involved in the spidery spreading phenotype. Moreover, viscosin both increases efficiency of surface spreading over the plant root and protects germinating seedlings in soil infected with the plant pathogen Pythium. Thus, viscosin could be a useful target for biotechnological development of plant growth promotion agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prospection of biological control agents in similar environments to the microbe application improves the chances of microorganisms establishment added to the environment. The low survival of these beneficial microorganisms added to hydroponic environment is a problem for the growth promotion and root rot biological control success in hydroponic crops. Because of the environmental similarity between hydroponic systems and mangrove ecosystems, the aim of this work was to evaluate the ability of mangrove microbes to control root rot caused by Pythium aphanidermatum and to improve plant growth in hydroponic cucumbers. Among the 28 strains evaluated for disease control in small-hydroponic system using cucumber seedlings, Gordonia rubripertincta SO-3B-2 alone or in combination with Pseudomonas stutzeri (MB-P3A- 49, MB-P3-C68 and SO-3L-3), and Bacillus cereus AVIC-3-6 increased the seedlings survival and were subsequently evaluated in hydroponic cucumbers in a greenhouse. Bacillus cereus AVIC-3-6 protected the plants from stunting caused by the pathogen and Gordonia rubripertincta SO-3B-2 and Pseudomonas stutzeri MB-P3A-49 increased the plant growth. We concluded that microorganisms from mangroves are useful as biocontrol agents and for improving plant growth in hydroponic crops.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clonal eucalyptus plantings have increased in recent years; however, some clones with high production characteristics have vegetative propagation problems because of weak root and aerial development. Endophytic microorganisms live inside healthy plants without causing any damage to their hosts and can be beneficial, acting as plant growth promoters. We isolated endophytic bacteria from eucalyptus plants and evaluated their potential in plant growth promotion of clonal plantlets of Eucalyptus urophylla x E. grandis, known as the hybrid, E. urograndis. Eighteen isolates of E. urograndis, clone 4622, were tested for plant growth promotion using the same clone. These isolates were also evaluated for indole acetic acid production and their potential for nitrogen fixation and phosphate solubilization. The isolates were identified by partial sequencing of 16S rRNA. Bacillus subtilis was the most prevalent species. Several Bacillus species, including B. licheniformis and B. subtilis, were found for the first time as endophytes of eucalyptus. Bacillus sp strain EUCB 10 significantly increased the growth of the root and aerial parts of eucalyptus plantlets under greenhouse conditions, during the summer and winter seasons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The herbicide propanil has long been used in rice production in southern Brazil. Bacteria isolated from contaminated soils in Massaranduba, Santa Catarina, Brazil, were found to be able to grow in the presence of propanil, using this compound as a carbon source. Thirty strains were identified as Pseudomonas (86.7%), Serratia (10.0%), and Acinetobacter (3.3%), based on phylogenetic analysis of 16S rDNA. Little genetic diversity was found within species, more than 95% homology, suggesting that there is selective pressure to metabolize propanil in the microbial community. Two strains of Pseudomonas (AF7 and AF1) were selected in bioreactor containing chemotactic growth medium, with the highest degradation activity of propanil exhibited by strain AF7, followed by AF1 (60 and 40%, respectively). These strains when encapsulated in alginate exhibited a high survival rate and were able to colonize the rice root surfaces. Inoculation with Pseudomonas strains AF7 and AF1 significantly improved the plant height of rice. Most of the Pseudomonas strains produced indoleacetic acid, soluble mineral phosphate, and fixed nitrogen. These bacterial strains could potentially be used for the bioremediation of propanil-contaminated soils and the promotion of plant growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The promotion of sugarcane growth by the endophytic Pantoea agglomerans strain 33.1 was studied under gnotobiotic and greenhouse conditions. The green fluorescent protein (GFP)-tagged strain P. agglomerans 33.1: pNKGFP was monitored in vitro in sugarcane plants by microscopy, reisolation, and quantitative PCR (qPCR). Using qPCR and reisolation 4 and 15 days after inoculation, we observed that GFP-tagged strains reached similar density levels both in the rhizosphere and inside the roots and aerial plant tissues. Microscopic analysis was performed at 5, 10, and 18 days after inoculation. Under greenhouse conditions, P. agglomerans 33.1-inoculated sugarcane plants presented more dry mass 30 days after inoculation. Cross-colonization was confirmed by reisolation of the GFP-tagged strain. These data demonstrate that 33.1:pNKGFP is a superior colonizer of sugarcane due to its ability to colonize a number of different plant parts. The growth promotion observed in colonized plants may be related to the ability of P. agglomerans 33.1 to synthesize indoleacetic acid and solubilize phosphate. Additionally, this strain may trigger chitinase and cellulase production by plant roots, suggesting the induction of a plant defense system. However, levels of indigenous bacterial colonization did not vary between inoculated and noninoculated sugarcane plants under greenhouse conditions, suggesting that the presence of P. agglomerans 33.1 has no effect on these communities. In this study, different techniques were used to monitor 33.1:pNKGFP during sugarcane cross-colonization, and our results suggested that this plant growth promoter could be used with other crops. The interaction between sugarcane and P. agglomerans 33.1 has important benefits that promote the plant's growth and fitness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In patients with coronary artery disease, the size of myocardial infarction mainly determines the subsequent clinical outcome. Accordingly, it is the primary strategy to decrease cardiovascular mortality by minimizing infarct size. Promotion of collateral artery growth (arteriogenesis) is an appealing option of reducing infarct size. It has been demonstrated in experimental models that tangential fluid shear stress is the major trigger of arterial remodeling and, thus, of collateral growth. Lower-leg, high-pressure external counterpulsation triggered to occur during diastole induces a flow velocity signal and thus tangential endothelial shear stress in addition to the flow signal caused by cardiac stroke volume. We here present two cases of cardiac transplant recipients as human "models" of physical coronary arteriogenesis, providing an example of progressing and regressing clinical arteriogenesis, and review available evidence from clinical studies on other feasible forms of physical arteriogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant crop yields are negatively conditioned by a large set of biotic and abiotic factors. An alternative to mitigate these adverse effects is the use of fungal biological control agents and endophytes. The egg-parasitic fungus Pochonia chlamydosporia has been traditionally studied because of its potential as a biological control agent of plant-parasitic nematodes. This fungus can also act as an endophyte in monocot and dicot plants, and has been shown to promote plant growth in different agronomic crops. An Affymetrix 22K Barley GeneChip was used in this work to analyze the barley root transcriptomic response to P. chlamydosporia root colonization. Functional gene ontology (GO) and gene set enrichment analyses showed that genes involved in stress response were enriched in the barley transcriptome under endophytism. An 87.5 % of the probesets identified within the abiotic stress response group encoded heat shock proteins. Additionally, we found in our transcriptomic analysis an up-regulation of genes implicated in the biosynthesis of plant hormones, such as auxin, ethylene and jasmonic acid. Along with these, we detected induction of brassinosteroid insensitive 1-associated receptor kinase 1 (BR1) and other genes related to effector-triggered immunity (ETI) and pattern-triggered immunity (PTI). Our study supports at the molecular level the growth-promoting effect observed in plants endophytically colonized by P. chlamydosporia, which opens the door to further studies addressing the capacity of this fungus to mitigate the negative effects of biotic and abiotic factors on plant crops.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Twenty endophytic bacteria were isolated from the meristematic tissues of three varieties of strawberry cultivated in vitro, and further identified, by FAME profile, into the genera Bacillus and Sphingopyxis. The strains were also characterized according to indole acetic acid production, phosphate solubilization and potential for plant growth promotion. Results showed that 15 strains produced high levels of IAA and all 20 showed potential for solubilizing inorganic phosphate. Plant growth promotion evaluated under greenhouse conditions revealed the ability of the strains to enhance the root number, length and dry weight and also the leaf number, petiole length and dry weight of the aerial portion. Seven Bacillus spp. strains promoted root development and one strain of Sphingopyxis sp. promoted the development of plant shoots. The plant growth promotion showed to be correlated to IAA production and phosphate solubilization. The data also suggested that bacterial effects could potentially be harnessed to promote plant growth during seedling acclimatization in strawberry