969 resultados para Growth kinetics
Resumo:
The results of a hybrid numerical simulation of the growth kinetics of carbon nanowall-like nanostructures in the plasma and neutral gas synthesis processes are presented. The low-temperature plasma-based process was found to have a significant advantage over the purely neutral flux deposition in providing the uniform size distribution of the nanostructures. It is shown that the nanowall width uniformity is the best (square deviations not exceeding 1.05) in high-density plasmas of 3.0× 1018 m-3, worsens in lower-density plasmas (up to 1.5 in 1.0× 1017 m-3 plasmas), and is the worst (up to 1.9) in the neutral gas-based process. This effect has been attributed to the focusing of ion fluxes by irregular electric field in the vicinity of plasma-grown nanostructures on substrate biased with -20 V potential, and differences in the two-dimensional adatom diffusion fluxes in the plasma and neutral gas-based processes. The results of our numerical simulations are consistent with the available experimental reports on the effect of the plasma process parameters on the sizes and shapes of relevant nanostructures.
Resumo:
Following an earlier study (J. Am. Chem Soc. 2007, 129, 4470) describing a very unusual growth kinetics of ZnO nanoparticles, we critically evaluate here the proposed mechanism involving a crucial role of the alkali base ion in controlling the growth of ZnO nanoparticles using other alkali bases, namely, LiOH and KOH. While confirming the earlier conclusion of the growth of ZnO nanoparticles being hindered by an effective passivating layer of cations present in the reaction mixture and thereby generalizing this phenomenon, present experimental data reveal an intriguing nonmonotonic dependence of the passivation efficacy on the ionic size of the alkali base ion. This unexpected behavior is rationalized on the basis of two opposing factors: (a) solvated cationic radii and (b) dissociation constant of the base.
Resumo:
Thin films of ZrO2 have been deposited by ALD on Si(100) and SIMOX using two different metalorganic complexes of Zr as precursors. These films are characterized by X-ray diffraction, transmission and scanning electron microscopies, infrared spectroscopy, and electrical measurements. These show that amorphous ZrO2 films of high dielectric quality may be grown on Si(100) starting about 400degreesC. As the growth temperature is raised, the films become crystalline, the phase formed and the microstructure depending on precursor molecular structure. The phase of ZrO2 formed depends also on the relative duration of the precursor and oxygen pulses. XPS and IR spectroscopy show that films grown at low temperatures contain chemically unbound carbon, its extent depending on the precursor. C-V measurements show that films grown on Si(100) have low interface state density, low leakage current, a hysteresis width of only 10-250 mV and a dielectric constant of similar to16-25.
Resumo:
We study the growth kinetics of nanoclusters in solution. There are two generic factors that drive growth: (a) reactions that produce the nanomaterial; and (b) diffusion of the nanomaterial due to chemical-potential gradients. We model the growth kinetics of ZnO nanoparticles via coupled dynamical equations for the relevant order parameters, We study this model both analytically and numerically. We find that there is a crossover in thenanocluster growth law: from L(t) similar to t(1/2) in the reaction-controlled regime to L(t) t(1/3) in the diffusion-controlled regime.
Resumo:
Regular vaccinations with potent vaccine, in endemic countries and vaccination to live in non-endemic countries are the methods available to control foot-and-mouth disease. Selection of candidate vaccine strain is not only cumbersome but the candidate should grow well for high potency vaccine preparation. Alternative strategy is to generate an infectious cDNA of a cell culture-adapted virus and use the replicon for development of tailor-made vaccines. We produced a chimeric `O' virus in the backbone of Asia 1 and studied its characteristics. The chimeric virus showed high infectivity titre (>10(10)) in BHK 21 cell lines, revealed small plague morphology and there was no cross reactivity with antiserum against Asia I. The virus multiplies rapidly and reaches peak at 12 h post infection. The vaccine prepared with this virus elicited high antibody titres.
Resumo:
Diffusion couple experiments are conducted to study phase evolutions in the Co-rich part of the Co-Ni-Ta phase diagram. This helps to examine the available phase diagram and propose a correction on the stability of the Co2Ta phase based on the compositional measurements and X-ray analysis. The growth rate of this phase decreases with an increase in Ni content. The same is reflected on the estimated integrated interdiffusion coefficients of the components in this phase. The possible reasons for this change are discussed based on the discussions of defects, crystal structure and the driving forces for diffusion. Diffusion rate of Co in the Co2Ta phase at the Co-rich composition is higher because of more number of Co-Co bonds present compared to that of Ta-Ta bonds and the presence of Co antisites for the deviation from the stoichiometry. The decrease in the diffusion coefficients because of Ni addition indicates that Ni preferably replaces Co antisites to decrease the diffusion rate. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
A systematic study of the kinetics of axial Ni silicidation of as-grown and oxidized Si nanowires (SiNWs) with different crystallographic orientations and core diameters ranging from ∼ 10 to 100 nm is presented. For temperatures between 300 and 440 °C the length of the total axial silicide intrusion varies with the square root of time, which provides clear evidence that the rate limiting step is diffusion of Ni through the growing silicide phase(s). A retardation of Ni-silicide formation for oxidized SiNWs is found, indicative of a stress induced lowering of the diffusion coefficients. Extrapolated growth constants indicate that the Ni flux through the silicided NW is dominated by surface diffusion, which is consistent with an inverse square root dependence of the silicide length on the NW diameter as observed for (111) orientated SiNWs. In situ TEM silicidation experiments show that NiSi(2) is the first forming phase for as-grown and oxidized SiNWs. The silicide-SiNW interface is thereby atomically abrupt and typically planar. Ni-rich silicide phases subsequently nucleate close to the Ni reservoir, which for as-grown SiNWs can lead to a complete channel break-off for prolonged silicidation due to significant volume expansion and morphological changes.
Resumo:
Chemical vapor deposition on copper is the most widely used method to synthesize graphene at large scale. However, the clear understanding of the fundamental mechanisms that govern this synthesis is lacking. Using a vertical-flow, cold-wall reactor with short gas residence time we observe the early growths to study the kinetics of chemical vapor deposition of graphene on copper foils and demonstrate uniform synthesis at wafer scale. Our results indicate that the growth is limited by the catalytic dissociative dehydrogenation on the surface and copper sublimation hinders the graphene growth. We report an activation energy of 3.1 eV for ethylene-based graphene synthesis. © The Electrochemical Society.
Resumo:
Nostoc sphaeroides Kutzing was cultivated in paddlewheel-driven raceway ponds and the growth kinetics of 1-2 mm and 3-4 mm colonies of N. sphaeroides was studied. The biomass productivities in 2.5 m(2) raceway ponds inoculated with 1-2 mm and 3-4 mm colonies were 5.2 and 0.25 g dry wt m(-2) stop d(-1), respectively. Furthermore, differently sized colonies showed different relative water content, total soluble carbohydrates, chlorophyll a content and density of filaments. This is the first report on mass culture of N. sphaeroides under outdoor conditions.
Resumo:
Tank cultivation of marine macroalgae involves air-agitation of the algal biomass and intermittent light conditions, i.e. periodic, short light exposure of the thalli in the range of 10 s at the water surface followed by plunging to low light or darkness at the tank bottom and recirculation back to the surface in the range of 1-2 min. Open questions relate to effects of surface irradiance on growth rate and yield in such tumble cultures and the possibility of chronic photoinhibition in full sunlight. A specially constructed shallow-depth tank combined with a dark tank allowed fast circulation times of approximately 5 s, at a density of 4.2 kg fresh weight (FW) m(-2) s(-1). Growth rate and yield of the red alga Palmaria palmata increased over a wide range of irradiances, with no signs of chronic photoinhibition, up to a growth-saturating irradiance of approximately 1600 mumol m(-2) s(-1) in yellowish light supplied by a sodium high pressure lamp at 16 h light per day. Maximum growth rate ranged at 12% FW d(-1), and maximum yield at 609 g FW m(-2) d(-1). This shows that high growth rates of individual thalli may be reached in a dense tumble culture, if high surface irradiances and short circulation times are supplied. Another aspect of intermittent light relates to possible changes of basic growth kinetics, as compared to continuous light. For this purpose on-line measurements of growth rate were performed with a daily light reduction by 50% in light-dark cycles of 1, 2 or 3 min duration during the daily light period. Growth rates at 10degreesC and 50 mumol photon m(-2) s- 1 dropped in all three intermittent light regimes during both the main light and dark periods and reached with all three periodicities approximately 50% of the control, with no apparent changes in basic growth kinetics, as compared to continuous light.
Resumo:
The present study on naoplankton is based on the isolation and development of unialgai culturas from the inshore waters at Cochin. characterization of their growth assimilation products. ecophysioiogy and evaluation of nutritional quality. The work was carried out during the period 1980-1983. The nanoplankters were isolated and grown in the labratory as batch cultures to study the increase in cell population, the photosynthetic pigment: ana physioiogical activity. The chemical composition of these organisms and their rate of excretion were also determined. The environmental factors physical and chemical that influence the growth of these Cultures were defined by conducting independentexperiments. These cultures of the isolated nanoplankters have raised indoor and fed to the larvae of edible oyster to test their suitability as live-food.