970 resultados para Ground control point
Resumo:
Monitoring the impact of sea storms on coastal areas is fundamental to study beach evolution and the vulnerability of low-lying coasts to erosion and flooding. Modelling wave runup on a beach is possible, but it requires accurate topographic data and model tuning, that can be done comparing observed and modeled runup. In this study we collected aerial photos using an Unmanned Aerial Vehicle after two different swells on the same study area. We merged the point cloud obtained with photogrammetry with multibeam data, in order to obtain a complete beach topography. Then, on each set of rectified and georeferenced UAV orthophotos, we identified the maximum wave runup for both events recognizing the wet area left by the waves. We then used our topography and numerical models to simulate the wave runup and compare the model results to observed values during the two events. Our results highlight the potential of the methodology presented, which integrates UAV platforms, photogrammetry and Geographic Information Systems to provide faster and cheaper information on beach topography and geomorphology compared with traditional techniques without losing in accuracy. We use the results obtained from this technique as a topographic base for a model that calculates runup for the two swells. The observed and modeled runups are consistent, and open new directions for future research.
Resumo:
The aims of this study were to investigate the hygienic practices in the food production of an institutional foodservice unit in Southern Brazil and to evaluate the effect of implementing good food handling practices and standard operational procedures using microbiological hygiene indicators. An initial survey of the general operating conditions classified the unit as regular in terms of compliance with State safety guidelines for food service establishments. An action plan that incorporated the correction of noncompliance issues and the training of food handlers in good food handling practices and standard operational procedures were then implemented. The results of the microbiological analysis of utensils, preparation surfaces, food handlers' hands, water, and ambient air were recorded before and after the implementation of the action plan. The results showed that the implementation of this type of practice leads to the production of safer foods.
Resumo:
This study aimed to verify the hygienic-sanitary working practices and to create and implement a Hazard Analysis Critical Control Point (HACCP) in two lobster processing industries in Pernambuco State, Brazil. The industries studied process frozen whole lobsters, frozen whole cooked lobsters, and frozen lobster tails for exportation. The application of the hygienic-sanitary checklist in the industries analyzed achieved conformity rates over 96% to the aspects evaluated. The use of the Hazard Analysis Critical Control Point (HACCP) plan resulted in the detection of two critical control points (CCPs) including the receiving and classification steps in the processing of frozen lobster and frozen lobster tails, and an additional critical control point (CCP) was detected during the cooking step of processing of the whole frozen cooked lobster. The proper implementation of the Hazard Analysis Critical Control Point (HACCP) plan in the lobster processing industries studied proved to be the safest and most cost-effective method to monitor each critical control point (CCP) hazards.
Resumo:
The Hazard Analysis and Critical Control Point (HACCP) is a preventive system that intends to guarantee the safety and harmlessness of food. It improves the quality of products as it eliminates possible defects during the process, and saves costs by practically eliminating final product inspection. This work describes the typical hazards encountered on the mushroom processing line for fresh consumption. Throughout the process, only the reception stage of mushrooms has been considered a critical control point (CCP). The main hazards at this stage were: the presence of unauthorised phytosanitary products; larger doses of such products than those permitted; the presence of pathogenic bacteria or thermo-stable enterotoxins. Putting into practice such knowledge would provide any industry that processes mushrooms for fresh consumption with a self-control HACCP-based system for its own productions.
Resumo:
The identification of ground control on photographs or images is usually carried out by a human operator, who uses his natural skills to make interpretations. In Digital Photogrammetry, which uses techniques of digital image processing extraction of ground control can be automated by using an approach based on relational matching and a heuristic that uses the analytical relation between straight features of object space and its homologous in the image space. A build-in self-diagnosis is also used in this method. It is based on implementation of data snooping statistic test in the process of spatial resection using the Iterated Extended Kalman Filtering (IEKF). The aim of this paper is to present the basic principles of the proposed approach and results based on real data.
Resumo:
This paper presents a method for indirect orientation of aerial images using ground control lines extracted from airborne Laser system (ALS) data. This data integration strategy has shown good potential in the automation of photogrammetric tasks, including the indirect orientation of images. The most important characteristic of the proposed approach is that the exterior orientation parameters (EOP) of a single or multiple images can be automatically computed with a space resection procedure from data derived from different sensors. The suggested method works as follows. Firstly, the straight lines are automatically extracted in the digital aerial image (s) and in the intensity image derived from an ALS data-set (S). Then, correspondence between s and S is automatically determined. A line-based coplanarity model that establishes the relationship between straight lines in the object and in the image space is used to estimate the EOP with the iterated extended Kalman filtering (IEKF). Implementation and testing of the method have employed data from different sensors. Experiments were conducted to assess the proposed method and the results obtained showed that the estimation of the EOP is function of ALS positional accuracy.
DIGITAL ELEVATION MODEL VALIDATION WITH NO GROUND CONTROL: APPLICATION TO THE TOPODATA DEM IN BRAZIL
Resumo:
Digital Elevation Model (DEM) validation is often carried out by comparing the data with a set of ground control points. However, the quality of a DEM can also be considered in terms of shape realism. Beyond visual analysis, it can be verified that physical and statistical properties of the terrestrial relief are fulfilled. This approach is applied to an extract of Topodata, a DEM obtained by resampling the SRTM DEM over the Brazilian territory with a geostatistical approach. Several statistical indicators are computed, and they show that the quality of Topodata in terms of shape rendering is improved with regards to SRTM.
Resumo:
Thesis (M.S.)--University of Illinois at Urbana-Champaign.
Resumo:
"C00-1018-1206."
Resumo:
Mode of access: Internet.
Resumo:
Cover title.
Resumo:
"Contract no. DA-44-009 Eng-2986, Department of the Army Project no. 8-35-11-106."