932 resultados para Griesmer Bound
Resumo:
We denoted by nq(k, d), the smallest value of n for which an [n, k, d]q code exists for given q, k, d. Since nq(k, d) = gq(k, d) for all d ≥ dk + 1 for q ≥ k ≥ 3, it is a natural question whether the Griesmer bound is attained or not for d = dk , where gq(k, d) = ∑[d/q^i], i=0,...,k-1, dk = (k − 2)q^(k−1) − (k − 1)q^(k−2). It was shown by Dodunekov [2] and Maruta [9], [10] that there is no [gq(k, dk ), k, dk ]q code for q ≥ k, k = 3, 4, 5 and for q ≥ 2k − 3, k ≥ 6. The purpose of this paper is to determine nq(k, d) for d = dk as nq(k, d) = gq(k, d) + 1 for q ≥ k with 3 ≤ k ≤ 8 except for (k, q) = (7, 7), (8, 8), (8, 9).
Resumo:
Let nq(k, d) denote the smallest value of n for which an [n, k, d]q code exists for given integers k and d with k ≥ 3, 1 ≤ d ≤ q^(k−1) and a prime or a prime power q. The purpose of this note is to show that there exists a series of the functions h3,q, h4,q, ..., hk,q such that nq(k, d) can be expressed.
Resumo:
In this paper, we prove the nonexistence of arcs with parameters (232, 48) and (233, 48) in PG(4,5). This rules out the existence of linear codes with parameters [232,5,184] and [233,5,185] over the field with five elements and improves two instances in the recent tables by Maruta, Shinohara and Kikui of optimal codes of dimension 5 over F5.
Resumo:
This paper surveys parts of the study of divisibility properties of codes. The survey begins with the motivating background involving polynomials over finite fields. Then it presents recent results on bounds and applications to optimal codes.
Resumo:
We surveyed 506 Australian high school students on career development (exploration, planning, job-knowledge, decision-making, indecision), personal functioning (well-being, self-esteem, life satisfaction, school satisfaction) and control variables (parents’ education, school achievement), and tested differences among work-bound, college-bound and university-bound students. The work-bound students had the poorest career development and personal functioning, the university-bound students the highest, with the college-bound students falling in-between the other two groups. Work-bound students did poorest, even after controlling for parental education and school achievement. The results suggest a relationship between career development and personal functioning in high school students.
Resumo:
We demonstrate a modification of the algorithm of Dani et al for the online linear optimization problem in the bandit setting, which allows us to achieve an O( \sqrt{T ln T} ) regret bound in high probability against an adaptive adversary, as opposed to the in expectation result against an oblivious adversary of Dani et al. We obtain the same dependence on the dimension as that exhibited by Dani et al. The results of this paper rest firmly on those of Dani et al and the remarkable technique of Auer et al for obtaining high-probability bounds via optimistic estimates. This paper answers an open question: it eliminates the gap between the high-probability bounds obtained in the full-information vs bandit settings.
Resumo:
Most learning paradigms impose a particular syntax on the class of concepts to be learned; the chosen syntax can dramatically affect whether the class is learnable or not. For classification paradigms, where the task is to determine whether the underlying world does or does not have a particular property, how that property is represented has no implication on the power of a classifier that just outputs 1’s or 0’s. But is it possible to give a canonical syntactic representation of the class of concepts that are classifiable according to the particular criteria of a given paradigm? We provide a positive answer to this question for classification in the limit paradigms in a logical setting, with ordinal mind change bounds as a measure of complexity. The syntactic characterization that emerges enables to derive that if a possibly noncomputable classifier can perform the task assigned to it by the paradigm, then a computable classifier can also perform the same task. The syntactic characterization is strongly related to the difference hierarchy over the class of open sets of some topological space; this space is naturally defined from the class of possible worlds and possible data of the learning paradigm.