936 resultados para Grey seal
Resumo:
Grey seal, Halichoerus grypus, pups in the breeding colony at Froan, Norway, have a bimodal pattern of early aquatic behaviour. About 40% of the pups spend their time ashore to save energy, which can be allocated to growth or deposition of energy-rich adipose tissue. The other 60% of the pups enter the sea during suckling and the early postweaning period, and disperse to other locations within the breeding colony. Pups may swim distances up to 12 km. Neonatal aquatic dispersal behaviour may lead to increased energy expenditure for thermoregulation and swimming, and thus lead to a low rate of body mass gain during suckling and a high rate of body mass loss after weaning. Thus, we examined relationships between natal aquatic dispersal behaviour and change in body mass (DeltaBM) in suckling and weaned pups. Suckling pups that had dispersed >2000 m had a significantly lower DBM than suckling pups that dispersed <2000 m or that did not disperse. In weaned pups, there were no effects of aquatic dispersal behaviour on DBM. We suggest that the bimodal natal aquatic dispersal behaviour in grey seals at the study site reflects two different strategies for postweaning survival: to stay ashore and get fat, or to take a swim and acquire diving and feeding skills.
Resumo:
Phocid seals have been proposed as models for diabetes because they exhibit limited insulin response to glucose, high blood glucose and increasing insulin resistance when fasting. Liver glucose-6-phosphatase (G6Pase) catalyses the final step in glucose production and is central to glucose regulation in other animals. G6Pase comprises a translocase (SLC37A4) and a catalytic subunit (G6PC). G6PC and SLC37A4 expression and activity are normally regulated by nutritional state and glucostatic hormones, particularly insulin, and are elevated in diabetes. We tested the hypotheses that (1) grey seal G6PC and SLC37A4 cDNA and predicted protein sequences differ from other species’ at functional sites, (2) relative G6Pase protein abundances are lower during feeding than fasting and (3) relative G6Pase protein abundances are related to insulin, insulin receptor phosphorylation and key metabolite levels. We show that G6PC and partial SLC37A4 cDNA sequences encode proteins sharing 82–95 % identity with other mammals. Seal G6PC contained no differences in sites responsible for activity, stability or subcellular location. Several substitutions in seal SLC37A4 were predicted to be tolerated with low probability, which could affect glucose production. Suckling pups had higher relative abundance of both subunits than healthy, postweaned fasting pups. Furthermore, relative G6PC abundance was negatively related to glucose levels. These findings contrast markedly with the response of relative hepatic G6Pase abundance to feeding, fasting, insulin, insulin sensitivity and key metabolites in other animals, and highlight the need to understand the regulation of enzymes involved in glucose control in phocids if these animals are to be informative models of diabetes.
Resumo:
Seals must manage their energy reserves carefully while they fast on land to ensure that they go to sea with sufficient fuel to sustain them until they find food. Glucocorticoids (GCs) have been implicated in the control of fuel metabolism and termination of fasting in pinnipeds. Here we tested the hypothesis that dexamethasone, an artificial GC, increases fat and protein catabolism, and induces departure from the breeding colony in wild, fasting grey seal pups. A single intramuscular dose of dexamethasone completely suppressed cortisol production for 24–72 h, demonstrating activation of GC receptors. In experiment 1, we compared the effects of a single dose of dexamethasone or saline administered 10 days after weaning on fasting mass and body composition changes, cortisol, blood urea nitrogen (BUN) and glucose levels, and timing of departure from the colony. In experiment 2, we investigated the effects of dexamethasone on short-term (5 days) changes in mass loss, body composition and BUN levels. In experiment 1, dexamethasone induced a short-lived increase in mass loss, but there was no difference in timing of departure between dexamethasone- and saline-treated pups (N=10). In experiment 2, dexamethasone increased protein and water loss and prevented a decrease in BUN levels (N=11). Our data suggest changes in cortisol contribute to regulation of protein catabolism in fasting seal pups, irrespective of the sex of the animal, but do not terminate fasting. By affecting the rate of protein depletion, lasting changes in cortisol levels could influence the amount of time seal pups have to find food, and thus may have important consequences for their survival.
Resumo:
Survival of seal pups may be affected by their ability to respond appropriately to stress. Chronic stress can adversely affect secretion of cortisol and thyroid hormones, which contribute to the control of fuel utilisation. Repeated handling could disrupt the endocrine response to stress and/or negatively impact upon mass changes during fasting. Here we investigated the effects of handling regime on cortisol and thyroid hormone levels, and body mass changes, in fasting male and female grey seal pups (Halichoerus grypus). Females had higher thyroid hormone levels than males throughout fasting and showed a reduction in cortisol midway through the fast that was not seen in males. This may reflect sex-specific fuel allocation or development. Neither handling frequency nor cumulative contact time affected plasma cortisol or thyroid hormone levels, the rate of increase in cortisol over the first five minutes of physical contact or the pattern of mass loss during fasting in either sex. The endocrine response to stress and the control of energy balance in grey seal pups appear to be robust to repeated, short periods of handling. Our results suggest that routine handling should have no additional impact on these animals than general disturbance caused by researchers moving around the colony.
Resumo:
This study used supplementary feeding to test the hypothesis that fuel partitioning during the postweaning fast in grey seal pups is affected by size and composition of energy reserves at weaning, and by extra provisioning. Mass and body composition changes were measured during suckling and fasting to investigate the effect of natural differences in energy reserves at weaning on subsequent allocation of fat and protein to energy use. We fed seven pups for 5 days after weaning, to investigate the effect of increased fuel availability, and particularly protein, on fuel utilisation. After correcting for protein used during the moult, the proportional contribution of fat was 86–99% of total energy use. Pups with greater energy reserves, i.e. those that were heavier and fatter at weaning, had higher rates of fat and energy use. There was no significant relationship between adiposity at weaning and proportional contribution of fat to energy use, perhaps due to a limited sample size or range of body masses and adiposity. Supplemented individuals used energy, specifically fat, much faster and utilised proportionally less of their endogenous protein by departure than non-supplemented individuals. Fat metabolism contributed a similar percentage to daily energy use in both groups. These findings show that pups spare protein, even when energy use is dramatically increased. Pups that receive greater maternal provisioning and lay down more protein may have increased survival chances at sea. This study highlights the importance of protein reserves in first year survival of grey seal pups.
Resumo:
The aim of this study was to examine the variation in body surface temperature of grey seal (Halichoerus grypus) pups throughout lactation in response to different environmental conditions. Radiative surface temperatures (T r, °C) of pups were measured on the Isle of May (56°11′N, 02°33′W), southeast Scotland from 29 October to 25 November 2003. Records were obtained from a total of 60 pups (32 female and 28 male) from three different pupping sites during early and late lactation. Pups were sheltered from high wind speeds but air temperature, humidity and solar radiation at pupping sites were similar to general meteorological conditions. The mean T r of all pups was 15.8°C (range 7.7–29.7°C) at an average air temperature of 10.2°C (range 6.5–13.8°C). There was no difference in the mean T r of pups between early and late lactation. However, the T r varied between different regions of the body with hind flippers on average 2–6°C warmer than all other areas measured. There was no difference in mean T r of male and female pups and pup body mass did not account for the variation in T r during early or late lactation. Throughout the day there was an increase in the T r of pups and this explained 20–28% of the variation in T r depending on stage of lactation. There was no difference in the mean T r of pups between pupping sites or associated with different substrate types. Wind speed and substrate temperature had no effect on the T r of pups. However, solar radiation, air temperature and relative humidity accounted for 48% of the variation in mean T r of pups during early lactation. During late lactation air temperature and solar radiation alone accounted for 43% of the variation in T r. These results indicate that environmental conditions explain only some of the variation in T r of grey seal pups in natural conditions. Differences in T r however indicate that the cost of thermoregulation for pups will vary throughout lactation. Further studies examining intrinsic factors such as blubber thickness and activity levels are necessary before developing reliable biophysical models for grey seals.
Resumo:
The cytokine hormone leptin is a key signalling molecule in many pathways that control physiological functions. Although leptin demonstrates structural conservation in mammals, there is evidence of positive selection in primates, lagomorphs and chiropterans. We previously reported that the leptin genes of the grey and harbour seals (phocids) have significantly diverged from other mammals. Therefore we further investigated the diversification of leptin in phocids, other marine mammals and terrestrial taxa by sequencing the leptin genes of representative species. Phylogenetic reconstruction revealed that leptin diversification was pronounced within the phocid seals with a high dN/dS ratio of 2.8, indicating positive selection. We found significant evidence of positive selection along the branch leading to the phocids, within the phocid clade, but not over the dataset as a whole. Structural predictions indicate that the individual residues under selection are away from the leptin receptor (LEPR) binding site. Predictions of the surface electrostatic potential indicate that phocid seal leptin is notably different to other mammalian leptins, including the otariids. Cloning the grey seal leptin binding domain of LEPR confirmed that this was structurally conserved. These data, viewed in toto, support a hypothesis that phocid leptin divergence is unlikely to have arisen by random mutation. Based upon these phylogenetic and structural assessments, and considering the comparative physiology and varying life histories among species, we postulate that the unique phocid diving behaviour has produced this selection pressure. The Phocidae includes some of the deepest diving species, yet have the least modified lung structure to cope with pressure and volume changes experienced at depth. Therefore, greater surfactant production is required to facilitate rapid lung re-inflation upon surfacing, while maintaining patent airways. We suggest that this additional surfactant requirement is met by the leptin pulmonary surfactant production pathway which normally appears only to function in the mammalian foetus.
Resumo:
Development of adequate diving capabilities is crucial for survival of seal pups and may depend on age and body size. We tracked the diving behavior of 20 gray seal pups during their first 3 mo at sea using satellite relay data loggers. We employed quantile analysis to track upper limits of dive duration and percentage time spent diving, and lower limits of surface intervals. When pups first left the breeding colony, extreme (ninety-fifth percentile) dive duration and percentage time spent diving were positively correlated with age, but not mass, at departure. Extreme dive durations and percentage time spent diving peaked at [Formula: see text] d of age at values comparable with those of adults, but were not sustained. Greater peaks in extreme percentage time spent diving occurred in pups that had higher initial values, were older at their peak, and were heavier at departure. Pups that were smaller and less capable divers when they left the colony improved extreme dive durations and percentage time spent diving more rapidly, once they were at sea. Minimum survival time correlated positively with departure mass. Pups that were heavier at weaning thus benefitted from being both larger and older at departure, but smaller pups faced a trade-off. While age at departure had a positive effect on early dive performance, departure mass impacted on peak percentage time spent diving and longer-term survival. We speculate that once small pups have attained a minimum degree of physiological development to support diving, they would benefit by leaving the colony when younger but larger to maximize limited fuel reserves, rather than undergoing further maturation on land away from potential food resources, because poor divers may be able to "catch up" once at sea.
Herpesviruses including novel gammaherpesviruses are widespread among phocid seal species in Canada.
Resumo:
Little is known about herpesviruses in Canadian pinnipeds. We measured prevalence of antibodies to herpesviruses in the sera from Canadian phocid seals by an indirect enzyme-linked immunosorbent assay. Wild harbor seals (Phoca vitulina) and captive harbor seals were positive for antibodies to Phocid herpesvirus 1 (PhoHV-1) at prevalences of 91% and 100%, respectively. Sera from wild hooded seals (Cystophora cristata), harp seals (Pagophilus groenlandica), and grey seals (Halichoerus grypus) were positive for antibodies to PhoHV-1 antigenically related herpesvirus antigens at 73%, 79%, and 96%, respectively. We isolated new herpesviruses in cell culture from two hunter-harvested ringed seals (Pusa hispida) in poor body condition from Ulukhaktok, Northwest Territories, Canada; one lethargic hooded seal from the St. Lawrence Estuary, Québec, Canada; and one captive, asymptomatic harp seal from the Magdalen Islands, Québec. Partial sequencing of the herpesvirus DNA polymerase gene revealed that all four virus isolates were closely related to PhoHV-2, a member of the Gammaherpesvirinae subfamily, with nucleotide similarity ranging between 92.8% and 95.3%. The new seal herpesviruses were genetically related to other known pinniped herpesviruses, such as PhoHV-1, Otariid herpesvirus 3, Hawaiian monk (Monachus schauinslandi) seal herpesvirus, and Phocid herpesvirus 5 with 47–48%, 55%, 77%, and 70–77% nucleotide similarities, respectively. The harp seal herpesvirus and both ringed seal herpesviruses were almost identical to each other, whereas the hooded seal herpesvirus was genetically different from the three others (92.8% nucleotide similarity), indicating detection of at least two novel seal herpesviruses. These findings are the first isolation, partial genome sequencing, and identification of seal gammaherpesviruses in three species of Canadian phocid seals; two species of which were suspected of exposure to one or more antigenically related herpesviruses based on serologic analyses.
Resumo:
Phenotypic and phylogenetic studies were performed on six unidentified, Gram-positive, catalase-negative, chain-forming Streptococcus-like organisms recovered from grey seals. Biochemically the six strains were highly related to each other, but they did not appear to correspond to any recognized species of the genus Streptococcus. Comparative 16S rRNA gene sequencing studies confirmed that phylogenetically the strains were members of the genus Streptococcus, but sequence divergence values of greater than 3 % compared with reference streptococcal species demonstrated that the organisms from seals represent a novel species. SDS-PAGE analysis of whole-cell proteins confirmed the phenotypic distinctiveness of the seal organisms. Based on biochemical criteria and molecular chemical and genetic evidence, it is proposed that the unknown organism from seals be classified as a novel species, Streptococcus halichoeri sp. nov., the type strain of which is CCUG 48324(T) (=CIP 108195(T)).
Resumo:
Seals and humans often target the same food resource, leading to competition. This is of mounting concern with fish stocks in global decline. Grey seals were tracked from southeast Ireland, an area of mixed demersal and pelagic fisheries, and overlap with fisheries on the Celtic Shelf and Irish Sea was assessed. Overall, there was low overlap between the tagged seals and fisheries. However, when we separate active (e.g. trawls) and passive gear (e.g. nets, lines) fisheries, a different picture emerged. Overlap with active fisheries was no different from that expected under a random distribution, but overlap with passive fisheries was significantly higher. This suggests that grey seals may be targeting the same areas as passive fisheries and/or specifically targeting passive gear. There was variation in foraging areas between individual seals suggesting habitat partitioning to reduce intra-specific competition or potential individual specialisation in foraging behaviour. Our findings support other recent assertions that seal/fisheries interactions in Irish waters are an issue in inshore passive fisheries, most likely at the operational and individual level. This suggests that seal population management measures would be unjustifiable, and mitigation is best focused on minimizing interactions at nets.
Resumo:
Animals that fast during breeding and/or development, such as phocids, must regulate energy balance carefully to maximize reproductive fitness and survival probability. Adiponectin, produced by adipose tissue, contributes to metabolic regulation by modulating sensitivity to insulin, increasing fatty acid oxidation by liver and muscle, and promoting adipogenesis and lipid storage in fat tissue. We tested the hypotheses that (1) circulating adiponectin, insulin, or relative adiponectin gene expression is related to nutritional state, body mass, and mass gain in wild gray seal pups; (2) plasma adiponectin or insulin is related to maternal lactation duration, body mass, percentage milk fat, or free fatty acid (FFA) concentration; and (3) plasma adiponectin and insulin are correlated with circulating FFA in females and pups. In pups, plasma adiponectin decreased during suckling (linear mixed-effects model [LME]: T = 4.49; P < 0.001) and the early postweaning fast (LME: T = 3.39; P = 0.004). In contrast, their blubber adiponectin gene expression was higher during the early postweaning fast than early in suckling (LME: T = 2.11; P = 0.046). Insulin levels were significantly higher in early (LME: T = 3.52; P = 0.004) and late (LME: T = 6.99; P < 0.001) suckling than in fasting and, given the effect of nutritional state, were also positively related to body mass (LME: T = 3.58; P = 0.004). Adiponectin and insulin levels did not change during lactation and were unrelated to milk FFA or percentage milk fat in adult females. Our data suggest that adiponectin, in conjunction with insulin, may facilitate fat storage in seals and is likely to be particularly important in the development of blubber reserves in pups.