966 resultados para Greenhouse gase
Resumo:
[cat] Les normes socials han estat incloses en la teoria de l’acció col.lectiva per a superar les dificultats per explicar perquè la gestió del béns comuns podria ser més efectiva quan s’autoregula per les mateixes comunitats. El paper rellevant de la confiança en els altres s’ha identificat en diversos contextos d’acció social a nivell local, però només recentment s’ha considerat la idea que també podria ser rellevant en el cas de béns comuns de caire global, seguint l’evidència bàsicament descriptiva recollida per Elinor Ostrom. Però fins ara no hi havia proves quantitatives disponibles d’aquesta idea. Utilitzant un conjunt de dades de 29 països europeus durant el període 1990-2007, donem evidència empírica a favor del paper del nivell de confiança en els altres en el context dels béns públics globals. Concloem que el nivell de confiança en els altres té un impacte reductor de les emissions de gasos d’efecte hivernacle; per exemple, l’extrapolació dels resultats implicaria una reducció d’emissions d’Espanya del 12,5% si el nivell mitjà de confiança en els altres dels espanyols fos tan elevat com els dels suecs.
Resumo:
[cat] Les normes socials han estat incloses en la teoria de l’acció col.lectiva per a superar les dificultats per explicar perquè la gestió del béns comuns podria ser més efectiva quan s’autoregula per les mateixes comunitats. El paper rellevant de la confiança en els altres s’ha identificat en diversos contextos d’acció social a nivell local, però només recentment s’ha considerat la idea que també podria ser rellevant en el cas de béns comuns de caire global, seguint l’evidència bàsicament descriptiva recollida per Elinor Ostrom. Però fins ara no hi havia proves quantitatives disponibles d’aquesta idea. Utilitzant un conjunt de dades de 29 països europeus durant el període 1990-2007, donem evidència empírica a favor del paper del nivell de confiança en els altres en el context dels béns públics globals. Concloem que el nivell de confiança en els altres té un impacte reductor de les emissions de gasos d’efecte hivernacle; per exemple, l’extrapolació dels resultats implicaria una reducció d’emissions d’Espanya del 12,5% si el nivell mitjà de confiança en els altres dels espanyols fos tan elevat com els dels suecs.
Resumo:
The Brazilian Amazon is one of the most rapidly developing agricultural areas in the world and represents a potentially large future source of greenhouse gases from land clearing and subsequent agricultural management. In an integrated approach, we estimate the greenhouse gas dynamics of natural ecosystems and agricultural ecosystems after clearing in the context of a future climate. We examine scenarios of deforestation and postclearing land use to estimate the future (2006-2050) impacts on carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) emissions from the agricultural frontier state of Mato Grosso, using a process-based biogeochemistry model, the Terrestrial Ecosystems Model (TEM). We estimate a net emission of greenhouse gases from Mato Grosso, ranging from 2.8 to 15.9 Pg CO(2)-equivalents (CO(2)-e) from 2006 to 2050. Deforestation is the largest source of greenhouse gas emissions over this period, but land uses following clearing account for a substantial portion (24-49%) of the net greenhouse gas budget. Due to land-cover and land-use change, there is a small foregone carbon sequestration of 0.2-0.4 Pg CO(2)-e by natural forests and cerrado between 2006 and 2050. Both deforestation and future land-use management play important roles in the net greenhouse gas emissions of this frontier, suggesting that both should be considered in emissions policies. We find that avoided deforestation remains the best strategy for minimizing future greenhouse gas emissions from Mato Grosso.
Resumo:
The Brazilian Amazon is one of the most rapidly developing agricultural frontiers in the world. The authors assess changes in cropland area and the intensification of cropping in the Brazilian agricultural frontier state of Mato Grosso using remote sensing and develop a greenhouse gas emissions budget. The most common type of intensification in this region is a shift from single-to double-cropping patterns and associated changes in management, including increased fertilization. Using the enhanced vegetation index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, the authors created a green-leaf phenology for 2001-06 that was temporally smoothed with a wavelet filter. The wavelet-smoothed green-leaf phenology was analyzed to detect cropland areas and their cropping patterns. The authors document cropland extensification and double-cropping intensification validated with field data with 85% accuracy for detecting croplands and 64% and 89% accuracy for detecting single-and double-cropping patterns, respectively. The results show that croplands more than doubled from 2001 to 2006 to cover about 100 000 km(2) and that new double-cropping intensification occurred on over 20% of croplands. Variations are seen in the annual rates of extensification and double-cropping intensification. Greenhouse gas emissions are estimated for the period 2001-06 due to conversion of natural vegetation and pastures to row-crop agriculture in Mato Grosso averaged 179 Tg CO(2)-e yr(-1),over half the typical fossil fuel emissions for the country in recent years.
Resumo:
Biofuels are both a promising solution to global warming mitigation and a potential contributor to the problem. Several life cycle assessments of bioethanol have been conducted to address these questions. We performed a synthesis of the available data on Brazilian ethanol production focusing on greenhouse gas (GHG) emissions and carbon (C) sinks in the agricultural and industrial phases. Emissions of carbon dioxide (CO(2)) from fossil fuels, methane (CH(4)) and nitrous oxide (N(2)O) from sources commonly included in C footprints, such as fossil fuel usage, biomass burning, nitrogen fertilizer application, liming and litter decomposition were accounted for. In addition, black carbon (BC) emissions from burning biomass and soil C sequestration were included in the balance. Most of the annual emissions per hectare are in the agricultural phase, both in the burned system (2209 out of a total of 2398 kg C(eq)), and in the unburned system (559 out of 748 kg C(eq)). Although nitrogen fertilizer emissions are large, 111 kg C(eq) ha-1 yr-1, the largest single source of emissions is biomass burning in the manual harvest system, with a large amount of both GHG (196 kg C(eq) ha-1 yr-1). and BC (1536 kg C(eq) ha-1 yr-1). Besides avoiding emissions from biomass burning, harvesting sugarcane mechanically without burning tends to increase soil C stocks, providing a C sink of 1500 kg C ha-1 yr-1 in the 30 cm layer. The data show a C output: input ratio of 1.4 for ethanol produced under the conventionally burned and manual harvest compared with 6.5 for the mechanized harvest without burning, signifying the importance of conservation agricultural systems in bioethanol feedstock production.
Characterization and greenhouse evaluation of Brazilian calcined nonapatite phosphate rocks for rice
Resumo:
Little information is available on the agronomic effectiveness of calcined nonapatite phosphate rock (PR) sources containing crandallite minerals in the form of Ca-Fe-Al-P for flooded and upland rice (Oryza sativa L.). We conducted laboratory and greenhouse studies to (i) characterize the mineralogical composition, (ii) investigate the solubility and dissolution behavior, and (iii) evaluate the agronomic effectiveness of two nonapatite PR sources (Juquia and Sapucaia) from Brazil and compared them with (i) a highly reactive Gafsa PR (Tunisia) containing apatite in the form of Ca-P and (ii) a reference water-soluble triple superphosphate (TSP) for flooded and upland rice. After calcination at 500 degrees C for 4 h, the solubility of Juquia PR and Sapucaia PR in neutral ammonium citrate (NAC) significantly increased from almost nil to a maximum of 39.3 and 114 g P kg(-1), respectively. X-ray diffraction showed that crystalline crandallite mineral was transformed to an amophorus form after calcination. The solubility behavior of the two calcined PR sources followed the same trend as Gafsa PR, that is, P release decreased with increasing equilibrium pH in the 0.01 M KCl solution (PH 3.0-8.0). At PH 3, the solubility followed: Gafsa PR > calcined Sapucaia PR > calcined Juquia PR. No P release was detected from any of the PR sources at pH >= 5.0 in the solution, indicating the Ca-P characteristic of the Ca-Fe-Al-P mineral controlled P dissolution of the calcined PR. Without calcination, both Juquia PR and Sapucaia PR were totally ineffective for upland rice grown on a Hiwassee clay loam (fine, kaolinitic, thermic Rhodic Kanhapludult) with pH 5.4 whereas a significant P response was observed with the calcined PR samples. For flooded rice grown on Hiwassee soil, the calcined Juquia PR and Sapucaia PR were 66 and 72%, respectively, as effective as TSP in increasing rice grain yield whereas Gafsa PR was ineffective. For upland rice grown on the unlimed soil, Gafsa PR was as effective as TSP in increasing rice grain yield whereas calcined Juquia PR and Sapucaia PR were 89 and 83% of TSP. The effectiveness of Gafsa PR was reduced to 0% after the soil was limed to pH 7.0 whereas the two calcined PR sources were reduced to 49% of TSP. Soil available P extracted by iron oxide impregnated filter paper (Pi test) or anion-exchange resin after rice harvest correlated well with P uptake by rice grain for flooded and upland rice.
Resumo:
The search for alternatives to fossil fuels is boosting interest in biodiesel production. Among the crops used to produce biodiesel, palm trees stand out due to their high productivity and positive energy balance. This work assesses life cycle emissions and the energy balance of biodiesel production from palm oil in Brazil. The results are compared through a meta-analysis to previous published studies: Wood and Corley (1991) [Wood BJ, Corley RH. The energy balance of oil palm cultivation. In: PORIM intl. palm oil conference agriculture; 1991.], Malaysia; Yusoff and Hansen (2005) [Yusoff S. Hansen SB. Feasibility study of performing an life cycle assessment on crude palm oil production in Malaysia. International Journal of Life Cycle Assessment 2007;12:50-8], Malaysia; Angarita et al. (2009) [Angarita EE, Lora EE, Costa RE, Torres EA. The energy balance in the palm oil-derived methyl ester (PME) life cycle for the cases in Brazil and Colombia. Renewable Energy 2009;34:2905-13], Colombia; Pleanjai and Gheewala (2009) [Pleanjai S. Gheewala SH. Full chain energy analysis of biodiesel production from palm oil in Thailand. Applied Energy 2009;86:S209-14], Thailand; and Yee et al. (2009) [Yee KF, Tan KT, Abdullah AZ, Lee la. Life cycle assessment of palm biodiesel: revealing facts and benefits for sustainability. Applied Energy 2009;86:S189-96], Malaysia. In our study, data for the agricultural phase, transport, and energy content of the products and co-products were obtained from previous assessments done in Brazil. The energy intensities and greenhouse gas emission factors were obtained from the Simapro 7.1.8. software and other authors. These factors were applied to the inputs and outputs listed in the selected studies to render them comparable. The energy balance for our study was 1:5.37. In comparison the range for the other studies is between 1:3.40 and 1:7.78. Life cycle emissions determined in our assessment resulted in 1437 kg CO(2)e/ha, while our analysis based on the information provided by other authors resulted in 2406 kg CO(2)e/ha, on average. The Angarita et al. (2009) [Angarita EE, Lora EE, Costa RE, Torres EA. The energy balance in the palm oil-derived methyl ester (PME) life cycle for the cases in Brazil and Colombia. Renewable Energy 2009:34:2905-13] study does not report emissions. When compared to diesel on a energy basis, avoided emissions due to the use of biodiesel account for 80 g CO(2)e/MJ. Thus, avoided life Cycle emissions associated with the use of biodiesel yield a net reduction of greenhouse gas emissions. We also assessed the carbon balance between a palm tree plantation, including displaced emissions from diesel, and a natural ecosystem. Considering the carbon balance outcome plus life cycle emissions the payback time for a tropical forest is 39 years. The result published by Gibbs et al. (2008) [Gibbs HK, Johnston M, Foley JA, Holloway T, Monfreda C, Ramankutty N, et al., Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environmental Research Letters 2008;3:10], which ignores life cycle emissions, determined a payback range for biodiesel production between 30 and 120 years. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.
Resumo:
Crop rotation can play a valuable role in managing plant parasitic nematodes, depending on the availability of profitable non-host or poor host crops. Alternatively, non-host cover crops or green manures can be used in succession to summer cash Crops for this Purpose. The aim of the current study was to evaluate, under greenhouse conditions, the host status of commercial hybrids and cultivars of grain and silage sorghum (Sorghum bicolor) for Meloidogyne javanica, and to assess the effect of sorghum on nematode population in comparison with pearl millet (poor host for M. javanica), showy crotalaria and sunn hemp (both non-hosts). Based on two experiments, it was stated that, as a rule, grain sorghum is a poor host for M. javanica, but silage sorghum is a good host. Silage sorghum `BRS 601` was an exception. In other experiments, grain sorghum, pearl millet (Pennisetum glaucum `BN 2`), showy crotalaria (Crotolaria spectabilis `Comum`) and sunn hemp (C. juncea `IAC-KR-1`) reduced M. javanica population level, while silage sorghum increased the nematode density.
Resumo:
Solid waste of the automobile industry containing large amounts of heavy metals might affect the emission of greenhouse gases (GHG) when applied to the soil. Accumulation of inorganic chemical elements in the environment generally occurs due to human activity (industry, agriculture, mining and waste landfills). Residues from human activities may release heavy metals to the soil solution, causing toxicity to plants and other soil organisms. Heavy metals may also be adsorbed to clay minerals and/or complexed by the soil organic matter, becoming a potential source of pollutants. Not much is known about the behavior of solid wastes in tropical soil as regarded as source of greenhouse gases (GHG). The emission of GHG (CO(2), CH(4) and N(2)O) was evaluated in incubated soil samples collected in an area contaminated with a solid residue from an automobile industry. Samples were randomly collected at 0 to 0.2 m (a mix of soil and residue), 0.2 to 0.4 m (only residue) and 0.4 to 0.6 m (only soil). A contiguous uncontaminated area, cultivated with sugarcane, was also sampled following the same protocol. Canonical Discriminant Analysis and Principal Component Analysis were applied to the data to evaluate the GHG emission rates. Emission rates of GHG were greater in the samples from the contaminated than the sugarcane area, particularly high during the first days of incubation. CO(2) emissions were greater in samples collected at the upper layer for both areas, while CH(4) and N(2)O emissions were similar in all samples. The emission rates of CH(4) were the most efficient variables to differentiate contaminated and uncontaminated areas.
Resumo:
We develop a forward-looking version of the recursive dynamic MIT Emissions Prediction and Policy Analysis (EPPA) model, and apply it to examine the economic implications of proposals in the US Congress to limit greenhouse gas (GHG) emissions. We find that shocks in the consumption path are smoothed out in the forward-looking model and that the lifetime welfare cost of GHG policy is lower than in the recursive model, since the forward-looking model can fully optimize over time. The forward-looking model allows us to explore issues for which it is uniquely well suited, including revenue-recycling and early action crediting. We find capital tax recycling to be more welfare-cost reducing than labor tax recycling because of its long-term effect on economic growth. Also, there are substantial incentives for early action credits; however, when spread over the full horizon of the policy they do not have a substantial effect on lifetime welfare costs.
Resumo:
Extending the traditional input-output model to account for the environmental impacts of production processes reveals the channels by which environmental burdens are transmitted throughout the economy. In particular, the environmental input-output approach is a useful technique for quantifying the changes in the levels of greenhouse emissions caused by changes in the final demand for production activities. The inputoutput model can also be used to determine the changes in the relative composition of greenhouse gas emissions due to exogenous inflows. In this paper we describe a method for evaluating how the exogenous changes in sectorial demand, such as changes in private consumption, public consumption, investment and exports, affect the relative contribution of the six major greenhouse gases regulated by the Kyoto Protocol to total greenhouse emissions. The empirical application is for Spain, and the economic and environmental data are for the year 2000. Our results show that there are significant differences in the effects of different sectors on the composition of greenhouse emissions. Therefore, the final impact on the relative contribution of pollutants will basically depend on the activity that receives the exogenous shock in final demand, because there are considerable differences in the way, and the extent to which, individual activities affect the relative composition of greenhouse gas emissions. Keywords: Greenhouse emissions, composition of emissions, sectorial demand, exogenous shock.