974 resultados para Green function


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is shown how the fractional probability density diffusion equation for the diffusion limit of one-dimensional continuous time random walks may be derived from a generalized Markovian Chapman-Kolmogorov equation. The non-Markovian behaviour is incorporated into the Markovian Chapman-Kolmogorov equation by postulating a Levy like distribution of waiting times as a kernel. The Chapman-Kolmogorov equation so generalised then takes on the form of a convolution integral. The dependence on the initial conditions typical of a non-Markovian process is treated by adding a time dependent term involving the survival probability to the convolution integral. In the diffusion limit these two assumptions about the past history of the process are sufficient to reproduce anomalous diffusion and relaxation behaviour of the Cole-Cole type. The Green function in the diffusion limit is calculated using the fact that the characteristic function is the Mittag-Leffler function. Fourier inversion of the characteristic function yields the Green function in terms of a Wright function. The moments of the distribution function are evaluated from the Mittag-Leffler function using the properties of characteristic functions and a relation between the powers of the second moment and higher order even moments is derived. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The greatest relaxation time for an assembly of three- dimensional rigid rotators in an axially symmetric bistable potential is obtained exactly in terms of continued fractions as a sum of the zero frequency decay functions (averages of the Legendre polynomials) of the system. This is accomplished by studying the entire time evolution of the Green function (transition probability) by expanding the time dependent distribution as a Fourier series and proceeding to the zero frequency limit of the Laplace transform of that distribution. The procedure is entirely analogous to the calculation of the characteristic time of the probability evolution (the integral of the configuration space probability density function with respect to the position co-ordinate) for a particle undergoing translational diffusion in a potential; a concept originally used by Malakhov and Pankratov (Physica A 229 (1996) 109). This procedure allowed them to obtain exact solutions of the Kramers one-dimensional translational escape rate problem for piecewise parabolic potentials. The solution was accomplished by posing the problem in terms of the appropriate Sturm-Liouville equation which could be solved in terms of the parabolic cylinder functions. The method (as applied to rotational problems and posed in terms of recurrence relations for the decay functions, i.e., the Brinkman approach c.f. Blomberg, Physica A 86 (1977) 49, as opposed to the Sturm-Liouville one) demonstrates clearly that the greatest relaxation time unlike the integral relaxation time which is governed by a single decay function (albeit coupled to all the others in non-linear fashion via the underlying recurrence relation) is governed by a sum of decay functions. The method is easily generalized to multidimensional state spaces by matrix continued fraction methods allowing one to treat non-axially symmetric potentials, where the distribution function is governed by two state variables. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A generalized asymptotic expansion in the far field for the problem of cylindrical wave reflection at a homogeneous impedance plane is derived. The expansion is shown to be uniformly valid over all angles of incidence and values of surface impedance, including the limiting cases of zero and infinite impedance. The technique used is a rigorous application of the modified steepest descent method of Ot

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with the problem of propagation from a monofrequency coherent line source above a plane of homogeneous surface impedance. The solution of this problem occurs in the kernel of certain boundary integral equation formulations of acoustic propagation above an impedance boundary, and the discussion of the paper is motivated by this application. The paper starts by deriving representations, as Laplace-type integrals, of the solution and its first partial derivatives. The evaluation of these integral representations by Gauss-Laguerre quadrature is discussed, and theoretical bounds on the truncation error are obtained. Specific approximations are proposed which are shown to be accurate except in the very near field, for all angles of incidence and a wide range of values of surface impedance. The paper finishes with derivations of partial results and analogous Laplace-type integral representations for the case of a point source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electron Green's function is obtained in the Bloch-Nordsieck approximation of three-dimensional QED. Dimensional regularization is used in the intermediate stages of calculation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Green function for a spin-1/2 charged particle in the presence of an external plane wave electromagnetic field is calculated by algebraic techniques in terms of the free-particle Green function.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We develop a new method to study the thermalization of time dependent retarded Green function in conformal field theories holographically dual to thin shell AdS Vaidya space times. The method relies on using the information of all time derivatives of the Green function at the shell and then evolving it for later times. The time derivatives of the Green function at the shell is given in terms of a recursion formula. Using this method we obtain analytic results for short time thermalization of the Green function. We show that the late time behaviour of the Green function is determined by the first quasinormal mode. We then implement the method numerically. As applications of this method we study the thermalization of the retarded time dependent Green function corresponding to a minimally coupled scalar in the AdS 3 and AdS 5 thin Vaidya shells. We see that as expected the late time behaviour is determined by the first quasinormal mode. We apply the method to study the late time behaviour of the shear vector mode in AdS 5 Vaidya shell. At small momentum the corresponding time dependent Green function is expected to relax to equilibrium by the shear hydrodynamic mode. Using this we obtain the universal ratio of the shear viscosity to entropy density from a time dependent process.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We compute the partition function of an anyon-like harmonic oscillator. The well known results for both the bosonic and fermionic oscillators are then re-obtained as particular cases of our function. The technique we employ is a non-relativistic version of the Green function method used in the computation of one-loop effective actions of quantum field theory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is shown how the single-site coherent potential approximation and the averaged T-matrix approximation become exact in the calculation of the averaged single-particle Green function of the electron in the Anderson model when the site energy is distributed randomly with lorentzian distribution. Using these approximations, Lloyd's exact result is reproduced.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Shifman-Vainshtein-Zakharov method of determining the eigenvalues and coupling strengths, from the operator product expansion, for the current correlation functions is studied in the nonrelativistic context, using the semiclassical expansion. The relationship between the low-lying eigenvalues, and the leading corrections to the imaginary-time Green function is elucidated by comparing systems which have almost identical spectra. In the case of an anharmonic oscillator it is found that with the procedure stated in the paper, that inclusion of more terms to the asymptotic expansion does not show any simple trend towards convergence to the exact values. Generalization to higher partial waves is given. In particular for the P-level of the oscillator, the procedure gives poorer results than for the S-level, although the ratio of the two comes out much better.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The density of states n(E) is calculated for a bound system whose classical motion is integrable, starting from an expression in terms of the trace of the time-dependent Green function. The novel feature is the use of action-angle variables. This has the advantages that the trace operation reduces to a trivial multiplication and the dependence of n(E) on all classical closed orbits with different topologies appears naturally. The method is contrasted with another, not applicable to integrable systems except in special cases, in which quantization arises from a single closed orbit which is assumed isolated and the trace taken by the method of stationary phase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A molecular model has been developed to study the vibrations of U centres in caesium iodide. Employing the rigid ion model with nearest-neighbour short-range forces, the dynamical matrix of order 27 × 27 was solved to obtain the frequencies of the localized modes and the perturbed lattice modes. The results are compared with those obtained from the Green function method.