995 resultados para Green Turtles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecological and genetic studies of marine turtles generally support the hypothesis of natal homing, but leave open the question of the geographical scale of genetic exchange and the capacity of turtles to shift breeding sites. Here we combine analyses of mitochondrial DNA (mtDNA) variation and recapture data to assess the geographical scale of individual breeding populations and the distribution of such populations through Australasia. We conducted multiscale assessments of mtDNA variation among 714 samples from 27 green turtle rookeries and of adult female dispersal among nesting sites in eastern Australia. Many of these rookeries are on shelves that were flooded by rising sea levels less than 10 000 years (c. 450 generations) ago. Analyses of sequence variation among the mtDNA control region revealed 25 haplotypes, and their frequency distributions indicated 17 genetically distinct breeding stocks (Management Units) consisting either of individual rookeries or groups of rookeries in general that are separated by more than 500 km. The population structure inferred from mtDNA was consistent with the scale of movements observed in long-term mark-recapture studies of east Australian rookeries. Phylogenetic analysis of the haplotypes revealed five clades with significant partitioning of sequence diversity (Φ = 68.4) between Pacific Ocean and Southeast Asian/Indian Ocean rookeries. Isolation by distance was indicated for rookeries separated by up to 2000 km but explained only 12% of the genetic structure. The emerging general picture is one of dynamic population structure influenced by the capacity of females to relocate among proximal breeding sites, although this may be conditional on large population sizes as existed historically across this region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coastal seagrass habitats in tropical and subtropical regions support aggregations of resident green turtles (Chelonia mydas) from several genetically distinct breeding populations. Migration of individuals to their respective dispersed breeding sites provides a complex pattern of migratory connectivity among nesting and feeding habitats of this species. An understanding of this pattern is important in regions where the persistence of populations is under threat from anthropogenic impacts. The present study uses mitochondrial DNA and mixed-stock analyses to assess the connectivity among seven feeding grounds across the north Australian coast and adjacent areas and 17 genetically distinct breeding populations from the Indo-Pacific region. It was hypothesised that large and geographically proximate breeding populations would dominate at nearby feeding grounds. As expected, each sampled feeding area appears to support multiple breeding populations, with two aggregations dominated by a local breeding population. Geographic distance between breeding and feeding habitat strongly influenced whether a breeding population contributed to a feeding ground (wi = 0.654); however, neither distance nor size of a breeding population was a good predictor of the extent of their contribution. The differential proportional contributions suggest the impact of anthropogenic mortality at feeding grounds should be assessed on a case-by-case basis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the reproductive season, sea turtles use a restricted area in the vicinity of their nesting beaches, making them vulnerable to predation. At Raine Island (Australia), the highest density green turtle Chelonia mydas rookery in the world, tiger sharks Galeocerdo cuvier have been observed to feed on green turtles, and it has been suggested that they may specialise on such air-breathing prey. However there is little information with which to examine this hypothesis. We compared the spatial and temporal components of movement behaviour of these two potentially interacting species in order to provide insight into the predator-prey relationship. Specifically, we tested the hypothesis that tiger shark movements are more concentrated at Raine Island during the green turtle nesting season than outside the turtle nesting season when turtles are not concentrated at Raine Island. Turtles showed area-restricted search behaviour around Raine Island for ~3–4 months during the nesting period (November–February). This was followed by direct movement (transit) to putative foraging grounds mostly in the Torres Straight where they switched to area-restricted search mode again, and remained resident for the remainder of the deployment (53–304 days). In contrast, tiger sharks displayed high spatial and temporal variation in movement behaviour which was not closely linked to the movement behaviour of green turtles or recognised turtle foraging grounds. On average, tiger sharks were concentrated around Raine Island throughout the year. While information on diet is required to determine whether tiger sharks are turtle specialists our results support the hypothesis that they target this predictable and plentiful prey during turtle nesting season, but they might not focus on this less predictable food source outside the nesting season.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim  A key life-history component for many animals is the need for movement between different geographical locations at particular times. Green turtle (Chelonia mydas) hatchlings disperse from their natal location to spend an early pelagic stage in the ocean, followed by a neritic stage where small juveniles settle in coastal areas. In this study, we combined genetic and Lagrangian drifter data to investigate the connectivity between natal and foraging locations. In particular we focus on the evidence for transatlantic transport. Location  Atlantic Ocean.

Methods
  We used mitochondrial DNA (mtDNA) sequences (n = 1567) from foraging groups (n = 8) and nesting populations (n = 12) on both sides of the Atlantic. Genetic data were obtained for Cape Verde juvenile turtles, a foraging group not previously sampled for genetic study. Various statistical methods were used to explore spatial genetics and population genetic structure (e.g. exact tests of differentiation, Geneland and analysis of molecular variance). Many-to-many mixed stock analysis estimated the connectivity between nesting and foraging groups.

Results
  Our key new finding is robust evidence for connectivity between a nesting population on the South American coast (25% of the Surinam nesting population are estimated to go to Cape Verde) and a foraging group off the coast of West Africa (38% of Cape Verde juveniles are estimated to originate from Surinam), thus extending the results of previous investigations by confirming that there is substantial transatlantic dispersal in both directions. Lagrangian drifter data demonstrated that transport by drift across the Atlantic within a few years is possible.

Main conclusions 
Small juvenile green turtles seem capable of dispersing extensively, and can drop out of the pelagic phase on a transatlantic scale (the average distance between natal and foraging locations was 3048 km). Nevertheless, we also find support for the ‘closest-to-home’ hypothesis in that the degree of contribution from a nesting population to a foraging group is correlated with proximity. Larger-sized turtles appear to feed closer to their natal breeding grounds (the average distance was 1133 km), indicating that those that have been initially transported to far-flung foraging grounds may still be able to move nearer to home as they grow larger.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well established that sea turtles return to natal rookeries to mate and lay their eggs, and that individual females are faithful to particular nesting sites within the rookery. Less certain is whether females are precisely returning to their natal beach. Attempts to demonstrate such precise natal philopatry with genetic data have had mixed success. Here we focused on the green turtles of three nesting sites in the Ascension Island rookery, separated by 5–15 km. Our approach differed from previous work in two key areas. First, we used male microsatellite data (five loci) reconstructed from samples collected from their offspring (N = 17) in addition to data for samples taken directly from females (N = 139). Second, we employed assignment methods in addition to the more traditional F-statistics. No significant genetic structure could be demonstrated with FST. However, when average assignment probabilities of females were examined, those for nesting populations in which they were sampled were indeed significantly higher than their probabilities for other populations (Mann–Whitney U-test: P < 0.001). Further evidence was provided by a significant result for the mAIC test (P < 0.001), supporting greater natal philopatry for females compared with males. The results suggest that female natal site fidelity was not sufficient for significant genetic differentiation among the nesting populations within the rookery, but detectable with assignment tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The movements and submergence behaviour of two male green turtles (Chelonia mydas) on their mating grounds at Ascension Island were investigated by satellite telemetry. During the mating season, males tended to conduct much shorter dives (typically <15 min) than those recorded previously for females during the internesting period at this rookery. This suggests that throughout the mating season males maintained relatively high activity levels, presumably associated with locating and mating with as many females as possible to maximise their reproductive output. At the end of their residence at the mating ground, the two males conducted longer dives (48 min and 21 min, respectively), suggesting that they rested before their migration away from the island. Although very few locations were obtained during this migration, those obtained showed that males migrate to South America, as has been shown previously for females from this population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have shown that for some populations of marine turtle, individuals move along narrow migration corridors in the open ocean. It has been suggested that these migration corridors may correspond with nearsurface oceanographic features that can be detected by remote sensing. This idea is examined by superimposing the tracks of green turtles (Chelonia mydas) migrating from Ascension Island to Brazil, on sea surface temperature (SST) data derived from Advanced Very High Resolution Radiometer (AVHRR) images. The turtles did not follow specific isotherms during migration nor make turns en-route where specific thermal cues were encountered. These results suggest that for this population, SST plays a minimal role in influencing the exact route that individuals follow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sea turtles are known to perform long-distance, oceanic migrations between disparate feeding areas and breeding sites, some of them located on isolated oceanic islands. These migrations demonstrate impressive navigational abilities, but the sensory mechanisms used are still largely unknown. Green turtles breeding at Ascension Island perform long oceanic migrations (>2200 km) between foraging areas along the Brazilian coast and the isolated island. By performing displacement experiments of female green turtles tracked by satellite telemetry in the waters around Ascension Island we investigated which strategies most probably are used by the turtles in locating the island. In the present paper we analysed the search trajectories in relation to alternative navigation strategies including the use of global geomagnetic cues, ocean currents, celestial cues and wind. The results suggest that the turtles did not use chemical information transported with ocean currents. Neither did the results indicate that the turtles use true bi-coordinate geomagnetic navigation nor did they use indirect navigation with respect to any of the available magnetic gradients (total field intensity, horizontal field intensity, vertical field intensity, inclination and declination) or celestial cues. The female green turtles successfully locating Ascension Island seemed to use a combination of searching followed by beaconing, since they searched for sensory contact with the island until they reached positions NW and N of the Island and from there presumably used cues transported by wind to locate the island during the final stages of the search.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The movements of 8 green turtles Chelonia mydas in Brazilian coastal waters were tracked using transmitters linked to the Argos system for periods of between 1 and 197 d. These were the first tracking data gathered on juveniles of this species in this important foraging ground. Information was integrated with that collected over a decade using traditional flipper-tagging methods at the same site. Both satellite telemetry and flipper tagging suggested that turtles undertook 1 of 3 general patterns of behaviour: pronounced long range movements (>100 km), moderate range movements (<100 km) or extended residence very close to the capture/release site. There seemed to be a general tendency for the turtles recaptured/tracked further afield to have been among the larger turtles captured. Satellite tracking of 5 turtles which moved from the release site showed that they moved through coastal waters; a factor which is likely to predispose migrating turtles to incidental capture as a result of the prevailing fishing methods in the region. The movements of the 3 turtles who travelled less than 100 km from the release site challenge previous ideas relating to home range in green turtles feeding in sea grass pastures. We hypothesise that there may be a fundamental difference in the pattern of habitat utilisation by larger green turtles depending on whether they are feeding on seagrass or macroalgae. Extended tracking of 2 small turtles which stayed near the release point showed that small juvenile turtles, whilst in residence in a particular feeding ground, can also exhibit high levels of site-fidelity with home ranges of the order of several square kilometers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Female green sea turtles (Chelonia mydas) nesting at Ascension Island (7°57'S, 14°22'W) in the middle of the Atlantic Ocean had a mean body mass (post oviposition) of 166.3 kg (range 107.5–243.5 kg, n = 119). Individuals lost mass slowly during the nesting season (mean mass loss 0.22 kg·d–1, n = 14 individuals weighed more than once). Gut-content analysis and behavioural observations indicated a lack of feeding. Females of equivalent-sized pinniped species that also do not feed while reproducing (nursing pups) on islands lose mass about 17 times faster. This comparatively low rate of mass loss by green turtles probably reflects their ectothermic nature and, consequently, their low metabolic rate. We estimate that a female turtle would lose only 19% of her body mass during the 143-day, 4400-km round trip from Brazil if she did not eat, laid 3 clutches of eggs, and lost 0.22 kg·d–.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a relative paucity of data regarding the at-sea distribution and behaviour of marine turtles. This is especially true for the critically endangered green turtle Chelonia mydas population in the Mediterranean. Six adult female green turtles were equipped with satellite transmitters and tracked for periods of between 28 and 293 d following their final nesting of the season in northern Cyprus. Data elucidated hitherto unknown migratory pathways and highlighted the importance of North African coastal waters as feeding habitat for adults of this species. For three individuals, instruments transmitted detailed information on dive depth, dive duration and water temperature which afforded novel insights into behaviour during different stages of migration, feeding in the foraging grounds and most remarkably, during a period of midwinter diapause when water temperatures were generally below 25°C. Turtles showed fidelity to specific shallow inshore feeding areas and moved offshore to deeper wintering sites.