813 resultados para Greedy algorithm


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scheduling optimization is concerned with the optimal allocation of events to time slots. In this paper, we look at one particular example of scheduling problems - the 2015 Joint Statistical Meetings. We want to assign each session among similar topics to time slots to reduce scheduling conflicts. Chapter 1 briefly talks about the motivation for this example as well as the constraints and the optimality criterion. Chapter 2 proposes use of Latent Dirichlet Allocation (LDA) to identify the topic proportions in each session and talks about the fitting of the model. Chapter 3 translates these ideas into a mathematical formulation and introduces a Greedy Algorithm to minimize conflicts. Chapter 4 demonstrates the improvement of the scheduling with this method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper describes two algorithms for adaptive power and bit allocations in a multiple input multiple output multiple-carrier code division multiple access (MIMO MC-CDMA) system. The first is the greedy algorithm, which has already been presented in the literature. The other one, which is proposed by the authors, is based on the use of the Lagrange multiplier method. The performances of the two algorithms are compared via Monte Carlo simulations. At present stage, the simulations are restricted to a single user MIMO MC-CDMA system, which is equivalent to a MIMO OFDM system. It is assumed that the system operates in a frequency selective fading environment. The transmitter has a partial knowledge of the channel whose properties are measured at the receiver. The use of the two algorithms results in similar system performances. The advantage of the Lagrange algorithm is that is much faster than the greedy algorithm. ©2005 IEEE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a polyhedral framework for establishing general structural properties on optimal solutions of stochastic scheduling problems, where multiple job classes vie for service resources: the existence of an optimal priority policy in a given family, characterized by a greedoid (whose feasible class subsets may receive higher priority), where optimal priorities are determined by class-ranking indices, under restricted linear performance objectives (partial indexability). This framework extends that of Bertsimas and Niño-Mora (1996), which explained the optimality of priority-index policies under all linear objectives (general indexability). We show that, if performance measures satisfy partial conservation laws (with respect to the greedoid), which extend previous generalized conservation laws, then the problem admits a strong LP relaxation over a so-called extended greedoid polytope, which has strong structural and algorithmic properties. We present an adaptive-greedy algorithm (which extends Klimov's) taking as input the linear objective coefficients, which (1) determines whether the optimal LP solution is achievable by a policy in the given family; and (2) if so, computes a set of class-ranking indices that characterize optimal priority policies in the family. In the special case of project scheduling, we show that, under additional conditions, the optimal indices can be computed separately for each project (index decomposition). We further apply the framework to the important restless bandit model (two-action Markov decision chains), obtaining new index policies, that extend Whittle's (1988), and simple sufficient conditions for their validity. These results highlight the power of polyhedral methods (the so-called achievable region approach) in dynamic and stochastic optimization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a polyhedral framework for establishing general structural properties on optimal solutions of stochastic scheduling problems, where multiple job classes vie for service resources: the existence of an optimal priority policy in a given family, characterized by a greedoid(whose feasible class subsets may receive higher priority), where optimal priorities are determined by class-ranking indices, under restricted linear performance objectives (partial indexability). This framework extends that of Bertsimas and Niño-Mora (1996), which explained the optimality of priority-index policies under all linear objectives (general indexability). We show that, if performance measures satisfy partial conservation laws (with respect to the greedoid), which extend previous generalized conservation laws, then theproblem admits a strong LP relaxation over a so-called extended greedoid polytope, which has strong structural and algorithmic properties. We present an adaptive-greedy algorithm (which extends Klimov's) taking as input the linear objective coefficients, which (1) determines whether the optimal LP solution is achievable by a policy in the given family; and (2) if so, computes a set of class-ranking indices that characterize optimal priority policies in the family. In the special case of project scheduling, we show that, under additional conditions, the optimal indices can be computed separately for each project (index decomposition). We further apply the framework to the important restless bandit model (two-action Markov decision chains), obtaining new index policies, that extend Whittle's (1988), and simple sufficient conditions for their validity. These results highlight the power of polyhedral methods (the so-called achievable region approach) in dynamic and stochastic optimization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show that if performance measures in a stochastic scheduling problem satisfy a set of so-called partial conservation laws (PCL), which extend previously studied generalized conservation laws (GCL), then the problem is solved optimally by a priority-index policy for an appropriate range of linear performance objectives, where the optimal indices are computed by a one-pass adaptive-greedy algorithm, based on Klimov's. We further apply this framework to investigate the indexability property of restless bandits introduced by Whittle, obtaining the following results: (1) we identify a class of restless bandits (PCL-indexable) which are indexable; membership in this class is tested through a single run of the adaptive-greedy algorithm, which also computes the Whittle indices when the test is positive; this provides a tractable sufficient condition for indexability; (2) we further indentify the class of GCL-indexable bandits, which includes classical bandits, having the property that they are indexable under any linear reward objective. The analysis is based on the so-called achievable region method, as the results follow fromnew linear programming formulations for the problems investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En option är ett finansiellt kontrakt som ger dess innehavare en rättighet (men medför ingen skyldighet) att sälja eller köpa någonting (till exempel en aktie) till eller från säljaren av optionen till ett visst pris vid en bestämd tidpunkt i framtiden. Den som säljer optionen binder sig till att gå med på denna framtida transaktion ifall optionsinnehavaren längre fram bestämmer sig för att inlösa optionen. Säljaren av optionen åtar sig alltså en risk av att den framtida transaktion som optionsinnehavaren kan tvinga honom att göra visar sig vara ofördelaktig för honom. Frågan om hur säljaren kan skydda sig mot denna risk leder till intressanta optimeringsproblem, där målet är att hitta en optimal skyddsstrategi under vissa givna villkor. Sådana optimeringsproblem har studerats mycket inom finansiell matematik. Avhandlingen "The knapsack problem approach in solving partial hedging problems of options" inför en ytterligare synpunkt till denna diskussion: I en relativt enkel (ändlig och komplett) marknadsmodell kan nämligen vissa partiella skyddsproblem beskrivas som så kallade kappsäcksproblem. De sistnämnda är välkända inom en gren av matematik som heter operationsanalys. I avhandlingen visas hur skyddsproblem som tidigare lösts på andra sätt kan alternativt lösas med hjälp av metoder som utvecklats för kappsäcksproblem. Förfarandet tillämpas även på helt nya skyddsproblem i samband med så kallade amerikanska optioner.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis considers optimization problems arising in printed circuit board assembly. Especially, the case in which the electronic components of a single circuit board are placed using a single placement machine is studied. Although there is a large number of different placement machines, the use of collect-and-place -type gantry machines is discussed because of their flexibility and increasing popularity in the industry. Instead of solving the entire control optimization problem of a collect-andplace machine with a single application, the problem is divided into multiple subproblems because of its hard combinatorial nature. This dividing technique is called hierarchical decomposition. All the subproblems of the one PCB - one machine -context are described, classified and reviewed. The derived subproblems are then either solved with exact methods or new heuristic algorithms are developed and applied. The exact methods include, for example, a greedy algorithm and a solution based on dynamic programming. Some of the proposed heuristics contain constructive parts while others utilize local search or are based on frequency calculations. For the heuristics, it is made sure with comprehensive experimental tests that they are applicable and feasible. A number of quality functions will be proposed for evaluation and applied to the subproblems. In the experimental tests, artificially generated data from Markov-models and data from real-world PCB production are used. The thesis consists of an introduction and of five publications where the developed and used solution methods are described in their full detail. For all the problems stated in this thesis, the methods proposed are efficient enough to be used in the PCB assembly production in practice and are readily applicable in the PCB manufacturing industry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La traduction statistique vise l’automatisation de la traduction par le biais de modèles statistiques. Dans ce travail, nous relevons un des grands défis du domaine : la recherche (Brown et al., 1993). Les systèmes de traduction statistique de référence, tel Moses (Koehn et al., 2007), effectuent généralement la recherche en explorant l’espace des préfixes par programmation dynamique, une solution coûteuse sur le plan computationnel pour ce problème potentiellement NP-complet (Knight, 1999). Nous postulons qu’une approche par recherche locale (Langlais et al., 2007) peut mener à des solutions tout aussi intéressantes en un temps et un espace mémoire beaucoup moins importants (Russell et Norvig, 2010). De plus, ce type de recherche facilite l’incorporation de modèles globaux qui nécessitent des traductions complètes et permet d’effectuer des modifications sur ces dernières de manière non-continue, deux tâches ardues lors de l’exploration de l’espace des préfixes. Nos expériences nous révèlent que la recherche locale en traduction statistique est une approche viable, s’inscrivant dans l’état de l’art.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To plan testing activities, testers face the challenge of determining a strategy, including a test coverage criterion that offers an acceptable compromise between the available resources and test goals. Known theoretical properties of coverage criteria do not always help and, thus, empirical data are needed. The results of an experimental evaluation of several coverage criteria for finite state machines (FSMs) are presented, namely, state and transition coverage; initialisation fault and transition fault coverage. The first two criteria focus on FSM structure, whereas the other two on potential faults in FSM implementations. The authors elaborate a comparison approach that includes random generation of FSM, construction of an adequate test suite and test minimisation for each criterion to ensure that tests are obtained in a uniform way. The last step uses an improved greedy algorithm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To connect different electrical, network and data devices with the minimum cost and shortest path, is a complex job. In huge buildings, where the devices are placed at different locations on different floors and only some specific routes are available to pass the cables and buses, the shortest path search becomes more complex. The aim of this thesis project is, to develop an application which indentifies the best path to connect all objects or devices by following the specific routes.To address the above issue we adopted three algorithms Greedy Algorithm, Simulated Annealing and Exhaustive search and analyzed their results. The given problem is similar to Travelling Salesman Problem. Exhaustive search is a best algorithm to solve this problem as it checks each and every possibility and give the accurate result but it is an impractical solution because of huge time consumption. If no. of objects increased from 12 it takes hours to search the shortest path. Simulated annealing is emerged with some promising results with lower time cost. As of probabilistic nature, Simulated annealing could be non optimal but it gives a near optimal solution in a reasonable duration. Greedy algorithm is not a good choice for this problem. So, simulated annealing is proved best algorithm for this problem. The project has been implemented in C-language which takes input and store output in an Excel Workbook

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Snow cleaning is one of the important tasks in the winter time in Sweden. Every year government spends huge amount money for snow cleaning purpose. In this thesis we generate a shortest road network of the city and put the depots in different place of the city for snow cleaning. We generate shortest road network using minimum spanning tree algorithm and find the depots position using greedy heuristic. When snow is falling, vehicles start work from the depots and clean the snow all the road network of the city. We generate two types of model. Models are economic model and efficient model. Economic model provide good economical solution of the problem and it use less number of vehicles. Efficient model generate good efficient solution and it take less amount of time to clean the entire road network.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Let beta be an hyperbolic algebraic integer of modulus greater than 1. Lot A be a finite set of Q[beta] and D-beta = {(a(i), b(i))(igreater than or equal to0) is an element of (A x A)(N) \ Sigma(i=0)(infinity) a(i)beta(-i)}. We give a necessary and sufficient condition for D-beta to be sofic. As a consequence, we obtain a result due to Thurston (see Corollary 1). We also treat the case where the set of digits A is given by the greedy algorithm and study the connection with the beta-shift. (C) 2002 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Set Covering Problem (SCP) plays an important role in Operational Research since it can be found as part of several real-world problems. In this work we report the use of a genetic algorithm to solve SCP. The algorithm starts with a population chosen by a randomized greedy algorithm. A new crossover operator and a new adaptive mutation operator were incorporated into the algorithm to intensify the search. Our algorithm was tested for a class of non-unicost SCP obtained from OR-Library without applying reduction techniques. The algorithms found good solutions in terms of quality and computational time. The results reveal that the proposed algorithm is able to find a high quality solution and is faster than recently published approaches algorithm is able to find a high quality solution and is faster than recently published approaches using the OR-Library.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The emergence of wavelength-division multiplexing (WDM) technology provides the capability for increasing the bandwidth of synchronous optical network (SONET) rings by grooming low-speed traffic streams onto different high-speed wavelength channels. Since the cost of SONET add–drop multiplexers (SADM) at each node dominates the total cost of these networks, how to assign the wavelength, groom the traffic, and bypass the traffic through the intermediate nodes has received a lot of attention from researchers recently. Moreover, the traffic pattern of the optical network changes from time to time. How to develop dynamic reconfiguration algorithms for traffic grooming is an important issue. In this paper, two cases (best fit and full fit) for handling reconfigurable SONET over WDM networks are proposed. For each approach, an integer linear programming model and heuristic algorithms (TS-1 and TS-2, based on the tabu search method) are given. The results demonstrate that the TS-1 algorithm can yield better solutions but has a greater running time than the greedy algorithm for the best fit case. For the full fit case, the tabu search heuristic yields competitive results compared with an earlier simulated annealing based method and it is more stable for the dynamic case.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Semi-supervised learning techniques have gained increasing attention in the machine learning community, as a result of two main factors: (1) the available data is exponentially increasing; (2) the task of data labeling is cumbersome and expensive, involving human experts in the process. In this paper, we propose a network-based semi-supervised learning method inspired by the modularity greedy algorithm, which was originally applied for unsupervised learning. Changes have been made in the process of modularity maximization in a way to adapt the model to propagate labels throughout the network. Furthermore, a network reduction technique is introduced, as well as an extensive analysis of its impact on the network. Computer simulations are performed for artificial and real-world databases, providing a numerical quantitative basis for the performance of the proposed method.