907 resultados para Gravitational captures


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The gravitational capture was initially used to understand the capture of planetary satellites. However, in the 90's decade, this phenomenon was applied in spacecraft trajectories. Belbruno and Miller studied missions in the Earth-Moon system that uses this technique to save fuel during the insertion of the spacecraft in its final orbit around the Moon. Using a parameter defined as twice the two-body energy of the planet-particle system, Yamakawa also studied the gravitational capture in the Earth-Moon system. In the present paper, this technique is used to study a mission that goes to the Neptune system and perform a gravitational capture in the satellite Triton. The results show direct and retrograde trajectories, for different values of the initial conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Física - FEG

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the problem of gravitational capture in the framework of the Sun-Uranus-particle system. Part of the space of initial conditions is systematically explored, and the duration of temporary gravitational capture is measured. The location and size of different capture-time regions are given in terms of diagrams of initial semimajor axis versus eccentricity. The other initial orbital elements - inclination (i), longitude of the node (Ω), argument of pericenter (ω), and time of pericenter passage (τ) - are first taken to be zero. Then we investigate the cases with ω = 90°, 180°, and 270°. We also present a sample of results for Ω = 90°, considering the cases i = 60°, 120°, 150°, and 180°. Special attention is given to the influence of the initial orbital inclination, taking orbits initially in opposition at pericenter. In this case, the initial inclination is varied from 0° to 180° in steps of 10°. The success of the final stage of the capture problem, which involves the transformation of temporary captures into permanent ones, is highly dependent on the initial conditions associated with the longest capture times. The largest regions of the initial-conditions space with the longest capture times occur at inclinations of 60°-70° and 160°. The regions of possible stability as a function of initial inclination are also delimited. These regions include not only a known set of retrograde orbits, but also a new sort of prograde orbit with inclinations greater than zero.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a behavioral car-following model based on empirical trajectory data that is able to reproduce the spontaneous formation and ensuing propagation of stop-and-go waves in congested traffic. By analyzing individual drivers’ car-following behavior throughout oscillation cycles it is found that this behavior is consistent across drivers and can be captured by a simple model. The statistical analysis of the model’s parameters reveals that there is a strong correlation between driver behavior before and during the oscillation, and that this correlation should not be ignored if one is interested in microscopic output. If macroscopic outputs are of interest, simulation results indicate that an existing model with fewer parameters can be used instead. This is shown for traffic oscillations caused by rubbernecking as observed in the US 101 NGSIM dataset. The same experiment is used to establish the relationship between rubbernecking behavior and the period of oscillations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pillar of salt: (3 hand-applied silver gelatin photographs) Statement: For women moving into new experiences and spaces, loss and hardship is often a price to be paid. These courageous women look back to things they have overcome in order to continue to grow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TRAUTMAN has postulated1 that the usual space−time singularity occurring in classical cosmological models and in the gravitational collapse of massive objects could be averted if intrinsic spin effects are incorporated into general relativity by adding torsion terms to the usual Einstein field equations, that is through the Einstein−Cartan theory. Invoking a primordial magnetic field for aligning all the individual nuclear spins he shows that his universe consisting of 1080 aligned neutrons collapses to a minimum radius of the order of 1 cm with a corresponding matter density of 1055 g cm-3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility of observing gravitational spin precession due to spin-orbit coupling in a binary pulsar system is considered. An analysis is presented which can aid in delineating the relevant physical effects from pulse-structure data. In this analysis, it is assumed that the pulsar radiation emanates from a cone whose axis is tilted with respect to the axis of rotation. It is found that the time-averaged pulse width and polarization sweep vary periodically with time and that this variation has a periodicity of the order of the spin-precession frequency averaged over a complete revolution. It is concluded that for an orbital period of about 180 years, it suffices to measure polarization data with an accuracy of a few parts in 100 over a period of six months to a year in order to uncover the effects of spin precession. The consistency of the analysis is checked, and the calculations are applied to a recently discovered binary pulsar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TRAUTMAN has postulated1 that the usual space−time singularity occurring in classical cosmological models and in the gravitational collapse of massive objects could be averted if intrinsic spin effects are incorporated into general relativity by adding torsion terms to the usual Einstein field equations, that is through the Einstein−Cartan theory. Invoking a primordial magnetic field for aligning all the individual nuclear spins he shows that his universe consisting of 1080 aligned neutrons collapses to a minimum radius of the order of 1 cm with a corresponding matter density of 1055 g cm-3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Einstein's general relativity is a classical theory of gravitation: it is a postulate on the coupling between the four-dimensional, continuos spacetime and the matter fields in the universe, and it yields their dynamical evolution. It is believed that general relativity must be replaced by a quantum theory of gravity at least at extremely high energies of the early universe and at regions of strong curvature of spacetime, cf. black holes. Various attempts to quantize gravity, including conceptually new models such as string theory, have suggested that modification to general relativity might show up even at lower energy scales. On the other hand, also the late time acceleration of the expansion of the universe, known as the dark energy problem, might originate from new gravitational physics. Thus, although there has been no direct experimental evidence contradicting general relativity so far - on the contrary, it has passed a variety of observational tests - it is a question worth asking, why should the effective theory of gravity be of the exact form of general relativity? If general relativity is modified, how do the predictions of the theory change? Furthermore, how far can we go with the changes before we are face with contradictions with the experiments? Along with the changes, could there be new phenomena, which we could measure to find hints of the form of the quantum theory of gravity? This thesis is on a class of modified gravity theories called f(R) models, and in particular on the effects of changing the theory of gravity on stellar solutions. It is discussed how experimental constraints from the measurements in the Solar System restrict the form of f(R) theories. Moreover, it is shown that models, which do not differ from general relativity at the weak field scale of the Solar System, can produce very different predictions for dense stars like neutron stars. Due to the nature of f(R) models, the role of independent connection of the spacetime is emphasized throughout the thesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gravitational waveform (GWF) generated by inspiralling compact binaries moving in quasi-circular orbits is computed at the third post-Newtonian (3PN) approximation to general relativity. Our motivation is two-fold: (i) to provide accurate templates for the data analysis of gravitational wave inspiral signals in laser interferometric detectors; (ii) to provide the associated spin-weighted spherical harmonic decomposition to facilitate comparison and match of the high post-Newtonian prediction for the inspiral waveform to the numerically-generated waveforms for the merger and ringdown. This extension of the GWF by half a PN order (with respect to previous work at 2.5PN order) is based on the algorithm of the multipolar post-Minkowskian formalism, and mandates the computation of the relations between the radiative, canonical and source multipole moments for general sources at 3PN order. We also obtain the 3PN extension of the source multipole moments in the case of compact binaries, and compute the contributions of hereditary terms (tails, tails-of-tails and memory integrals) up to 3PN order. The end results are given for both the complete plus and cross polarizations and the separate spin-weighted spherical harmonic modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical solution for the gravitational stresses in single span deep beams using Fourier series has been given. Numerical results for different span to depth ratios are given and these have been compared with the photoelastic results given by Saad and Hendry [1], and the finite difference results of Chow et al. [2,3].