825 resultados para Grasses.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased or fluctuating resources may facilitate opportunities for invasive exotic plants to dominate. This hypothesis does not, however, explain how invasive species succeed in regions characterized by low resource conditions or how these species persist in the lulls between high resource periods. We compare the growth of three co-occurring C4 perennial bunchgrasses under low resource conditions: an exotic grass, Eragrostis curvula (African lovegrass) and two native grasses, Themeda triandra and Eragrostis sororia. We grew each species over 12 weeks under low nutrients and three low water regimes differentiated by timing: continuous, pulsed, and mixed treatments (switched from continuous to pulsed and back to continuous). Over time, we measured germination rates, time to germination (first and second generations), height, root biomass, vegetative biomass, and reproductive biomass. Contrary to our expectations that the pulsed watering regime would favor the invader, water-supply treatments had little significant effect on plant growth. We did find inherent advantages in a suite of early colonization traits that likely favor African lovegrass over the natives including faster germination speed, earlier flowering times, faster growth rates and from 2 weeks onward it was taller. African lovegrass also showed similar growth allocation strategies to the native grasses in terms of biomass levels belowground, but produced more vegetative biomass than kangaroo grass. Overall our results suggest that even under low resource conditions invasive plant species like African lovegrass can grow similarly to native grasses, and for some key colonization traits, like germination rate, perform better than natives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Pollens of subtropical grasses, Bahia (Paspalum notatum), Johnson (Sorghum halepense), and Bermuda (Cynodon dactylon), are common causes of respiratory allergies in subtropical regions worldwide. Objective To evaluate IgE cross-reactivity of grass pollen (GP) found in subtropical and temperate areas. Methods Case and control serum samples from 83 individuals from the subtropical region of Queensland were tested for IgE reactivity with GP extracts by enzyme-linked immunosorbent assay. A randomly sampled subset of 21 serum samples from patients with subtropical GP allergy were examined by ImmunoCAP and cross-inhibition assays. Results Fifty-four patients with allergic rhinitis and GP allergy had higher IgE reactivity with P notatum and C dactylon than with a mixture of 5 temperate GPs. For 90% of 21 GP allergic serum samples, P notatum, S halepense, or C dactylon specific IgE concentrations were higher than temperate GP specific IgE, and GP specific IgE had higher correlations of subtropical GP (r = 0.771-0.950) than temperate GP (r = 0.317-0.677). In most patients (71%-100%), IgE with P notatum, S halepense, or C dactylon GPs was inhibited better by subtropical GP than temperate GP. When the temperate GP mixture achieved 50% inhibition of IgE with subtropical GP, there was a 39- to 67-fold difference in concentrations giving 50% inhibition and significant differences in maximum inhibition for S halepense and P notatum GP relative to temperate GP. Conclusion Patients living in a subtropical region had species specific IgE recognition of subtropical GP. Most GP allergic patients in Queensland would benefit from allergen specific immunotherapy with a standardized content of subtropical GP allergens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grass pollens of the temperate (Pooideae) subfamily and subtropical subfamilies of grasses are major aeroallergen sources worldwide. The subtropical Chloridoideae (e.g. Cynodon dactylon; Bermuda grass) and Panicoideae (e.g. Paspalum notatum; Bahia grass) species are abundant in parts of Africa, India, Asia, Australia and the Americas, where a large and increasing proportion of the world's population abide. These grasses are phylogenetically and ecologically distinct from temperate grasses. With the advent of global warming, it is conceivable that the geographic distribution of subtropical grasses and the contribution of their pollen to the burden of allergic rhinitis and asthma will increase. This review aims to provide a comprehensive synthesis of the current global knowledge of (i) regional variation in allergic sensitivity to subtropical grass pollens, (ii) molecular allergenic components of subtropical grass pollens and (iii) allergic responses to subtropical grass pollen allergens in relevant populations. Patients from subtropical regions of the world show higher allergic sensitivity to grass pollens of Chloridoideae and Panicoideae grasses, than to temperate grass pollens. The group 1 allergens are amongst the allergen components of subtropical grass pollens, but the group 5 allergens, by which temperate grass pollen extracts are standardized for allergen content, appear to be absent from both subfamilies of subtropical grasses. Whilst there are shared allergenic components and antigenic determinants, there are additional clinically relevant subfamily-specific differences, at T- and B-cell levels, between pollen allergens of subtropical and temperate grasses. Differential immune recognition of subtropical grass pollens is likely to impact upon the efficacy of allergen immunotherapy of patients who are primarily sensitized to subtropical grass pollens. The literature reviewed herein highlights the clinical need to standardize allergen preparations for both types of subtropical grass pollens to achieve optimal diagnosis and treatment of patients with allergic respiratory disease in subtropical regions of the world. © 2014 John Wiley & Sons Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whilst the topic of soil salinity has received a substantive research effort over the years, the accurate measurement and interpretation of salinity tolerance data remain problematic. The tolerance of four perennial grass species (non-halophytes) to sodium chloride (NaCl) dominated salinity was determined in a free-flowing sand culture system. Although the salinity tolerance of non-halophytes is often represented by the threshold salinity model (bent-stick model), none of the species in the current study displayed any observable salinity threshold. Further, the observed yield decrease was not linear as suggested by the model. On re-examination of earlier datasets, we conclude that the threshold salinity model does not adequately describe the physiological processes limiting growth of non-halophytes in saline soils. Therefore, the use of the threshold salinity model is not recommended for non-halophytes, but rather, a model which more accurately reflects the physiological response observed in these saline soils, such as an exponential regression curve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rich suite of pasture legumes and grasses have been released for the Queensland grain belt, particularly from forage evaluation programs carried out during the past 50 years (Gramshaw and Walker 1988; http://www.pi.csiro.au/ahpc/). Thus, there is an extensive and comprehensive knowledge of the adaptation of those species and adaptation is being extended widely - for example, to farmer groups in 'LeyGrain' workshops developed and delivered by the authors, and as written information (e.g. Lloyd et al. 2006; 2007a; 2007b) and on the website www.dpi.qld.gov.au. However, our knowledge is broad and, as we come to understand natural systems, their limitations and the extent of variation within those systems, it is equally clear that our knowledge of pasture plant adaptation is not as well defined as it needs to be. It is an interesting conflict - the more we understand, the more we begin to realise our lack of understanding. The appropriate species for sowing in different situations are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three new species of Tilletia are reported from grasses in northern Australia, namely T. pseudoraphidis on Pseudoraphis spinescens, T. sehimicola on Sehima nervosum and T. majuscula on Yakirra majuscula.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sporobolus pyramidalis, S. africanus, S. natalensis, S. fertilis and S. jacquemontii, known collectively as the weedy Sporobolus grasses, are exotic weeds causing serious economic losses in grazing areas along Australia's entire eastern coast. In one of the first attempts to provide biological control for a grass, the potential of a smut, Ustilago sporoboli-indici, as a biological control agent for all five weedy Sporobolus spp. found in Australia was evaluated in glasshouse studies. Application of basidiospores to 21-day-old Sporobolus seedlings and subsequent incubation in a moist chamber (26 °C, 90% RH, 48 h) resulted in infection of S. pyramidalis, S. africanus, S. natalensis and S. fertilis but not S. jacquemontii. Host-range trials with 13 native Australian Sporobolus spp. resulted in infection of four native species. Evaluation of damage caused by the smut on two Australian native and two weedy Sporobolus spp. showed that the total numbers of flowers infected for the four grasses were in the following order: S. creber > S. fertilis > S. elongatus > S. natalensis with percentage flower infections of 21%, 14%, 12% and 3%, respectively. Significant differences (P = 0.001) were found when the numbers of infected flowers caused by each treatment were compared. The infection of the four native Sporobolus spp. by the smut indicated that it was not sufficiently host specific for release in Australia and the organism was rejected as a potential biological control agent. The implications of these results are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bill Palmer and colleagues recently published their paper 'Prospects for the biological control of the weedy sporobolus grasses in Australia' in Proceedings of the 16th Australian Weeds Conference. The paper gives a summary of a recent project to find a biological control for the weedy sporobolus grasses, which include giant rat's tail grass. Southern Africa was surveyed for potential agents and two, a leaf smut and a stem wasp, were selected for follow up studies. Unfortunately, they could not rear the stem wasp in the laboratory and the leaf smut infected four of the Australian native Sporobolus spp. and was therefore rejected. This project was one of the first attempts at biological control of a grass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The population dynamics of the palatable, perennial grasses Bothriochloa ewartiana (Domin) C.E.Hubb. (desert Mitchell grass), Chrysopogon fallax S.T.Blake (golden beard grass) and Heteropogon contortus (L.) P.Beauv. ex Roem. & Schult. (black speargrass), were studied in an extensive grazing study conducted in a eucalypt woodland within the Aristida-Bothriochloa pasture community in central Queensland between 1994 and 2000. Treatments were three grazing pressures based on light, medium and heavy utilisation of forage available at the end of summer and two timber treatments (trees intact and trees killed). Seasonal rainfall throughout this study was generally favourable for plant growth with no severe drought periods. Grazing pressure had a greater overall impact on plant dynamics than timber treatment, which had minimal impact. Grazing pressure had a large impact on H. contortus dynamics, an intermediate impact on B. ewartiana and no impact on C. fallax. Fluctuations in plant density of both B. ewartiana and C. fallax were small because both species were long lived with low levels of seedling recruitment and plant death, whereas fluctuations in H. contortus density were relatively high because of its relatively short life span and higher levels of both recruitment and death. Heavy grazing pressure increased the recruitment of B. ewartiana and H. contortus in some years but had no impact on that of C. fallax. Heavy grazing pressure reduced the survival of the original plants of both B. ewartiana and H.contortus but not of C. fallax. For H. contortus, the size of the original plants was larger where trees were killed than where trees were left intact and plants of the 1995 seedling cohort were larger in 1998 at heavy compared with those at light and medium grazing pressure. Grazing had a minor negative impact on the soil seed bank of H. contortus. Populations of all three species remained stable throughout this study, although the favourable seasonal rainfall experienced and the short duration of this study relative to the life span of these species may have masked longer term, deleterious impacts of heavy grazing pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Twenty three herbicides including the current registered herbicides were screened for activity on pre-emergent, juvenile and mature plants of the weedy Sporobolus grass species Sporobolus pyramidalis P.Beauv. and Sporobolus fertilis (Steud.) Clayton. No new herbicides trialled effectively controlled mature plants. Propaquizafop, fluazifop-P-hutyI, flupropanate, haloxyfop-R-methyl ester, glyphosate-ipa and clethodim + haloxyfop-R-methyl ester mix showed good activity on juvenile plants while atrazine, flupropanate, dithiopyr and imazapyr where effective as pre-emergent herbicides. Further work needs to be done to define the recommended application rates for juvenile and pre-emergent plant stages and to determine the selectivity of these herbicides on native and exotic pasture grasses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In February 2004, Redland Shire Council with help from a Horticulture Australia research project was able to establish a stable grass cover of seashore paspalum (Paspalum vaginatum) on a Birkdale park where the soil had previously proved too salty to grow anything else. Following on from their success with this small 0.2 ha demonstration area, Redland Shire has since invested hundreds of thousands of dollars in successfully turfing other similarly “impossible” park areas with seashore paspalum. Urban salinity can arise for different reasons in different places. In inland areas such as southern NSW and the WA wheatbelt, the usual cause is rising groundwater bringing salt to the surface. In coastal sites, salt spray or periodic tidal inundation can result in problems. In Redland Shire’s case, the issue was compacted marine sediments (mainly mud) dug up and dumped to create foreshore parkland in the course of artificial canal developments. At Birkdale, this had created a site that was both strongly acid and too salty for most plants. Bare saline scalds were interspersed by areas of unthrifty grass. Finding a salt tolerant grass is no “silver bullet” or easy solution to salinity problems. Rather, it buys time to implement sustainable long-term establishment and maintenance practices, which are even more critical than with conventional turfgrasses. These practices include annual slicing or coring in conjunction with gypsum/dolomite amendment and light topdressing with sandy loam soil (to about 1 cm depth), adequate maintenance fertiliser, weed control measures, regular leaching irrigation was applied to flush salts below the root zone, and irrigation scheduling to maximise infiltration and minimise run off. Three other halophytic turfgrass species were also identified, each of them adapted to different environments, management regimes and uses. These have been shortlisted for larger-scale plantings in future work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After more than 30 years in which ‘Tifgreen’ and ‘Tifdwarf’ were the only greens-quality varieties available, the choice for golf courses and bowls clubs in northern Australia has been expanded to include six new Cynodon hybrids [Cynodon dactylon (L.) Pers x Cynodon transvaalensis Burtt-Davy]. Five of these – ‘Champion Dwarf’ (Texas), ‘MS-Supreme’ (Mississippi), FloraDwarf™ (Florida), ‘TifEagle’ (Georgia), MiniVerde™ (Arizona) - are from US breeding programs, while the sixth, ‘TL2’ (marketed as Novotek™) was selected in north Queensland. The finer, denser and lower growing habit of the “ultradwarf” cultivars allows very low mowing heights (e.g. 2.5 mm) to be imposed, resulting in denser and smoother putting and bowls surfaces. In addition to the Cynodon hybrids, four new greens quality seashore paspalum (Paspalum vaginatum O. Swartz) cultivars including ‘Sea Isle 2000’, Sea Isle Supreme™, Velvetene™ and Sea Dwarf™ (where tolerance of salty water is required) expands the range of choices for greens in difficult environments. The project was developed to determine (a) the appropriate choice of cultivar for different environments and budgets, and (b) best management practices for the new cultivars which differ from the Cynodon hybrid industry standards ‘Tifgreen’ and ‘Tifdwarf’. Management practices, particularly fertilising, mowing heights and frequency, and thatch control were investigated to determine optimum management inputs and provide high quality playing surfaces with the new grasses. To enable effective trialling of these new and old cultivars it was essential to have a number of regional sites participating in the study. Drought and financial hardship of many clubs presented an initial setback with numerous clubs wanting to be involved in the study but were unable to commit due to their financial position at the time. The study was fortunate to have seven regional sites from Queensland, New South Wales, Victoria and South Australia volunteer to be involved in the study which would add to the results being collected at the centralised test facility being constructed at DEEDI’s Redlands Research Station. The major research findings acquired from the eight trial sites included: • All of the new second generation “ultradwarf” couchgrasses tend to produce a large amount of thatch with MiniVerde™ being the greatest thatch producer, particularly compared to ‘Tifdwarf’ and ‘Tifgreen’. The maintenance of the new Cynodon hybrids will require a program of regular dethatching/grooming as well as regular light dustings of sand. Thatch prevention should begin 3 to 4 weeks after planting a new “ultradwarf” couchgrass green, with an emphasis on prevention rather than control. • The “ultradwarfs” produced faster green speeds than the current industry standards ‘Tifgreen’ and ‘Tifdwarf’. However, all Cynodon hybrids were considerably faster than the seashore paspalums (e.g. comparable to the speed diference of Bentgrass and couchgrass) under trial conditions. Green speed was fastest being cut at 3.5 mm and rolled (compared to 3.5 mm cut, no roll and 2.7 mm cut, no roll). • All trial sites reported the occurrence of disease in the Cynodon hybrids with the main incidence of disease occurring during the dormancy period (autumn and winter). The main disease issue reported was “patch diseases” which includes both Gaumannomyces and Rhizoctonia species. There was differences in the severity of the disease between cultivars, however, the severity of the disease was not consistent between cultivars and is largely attributed to an environment (location) effect. In terms of managing the occurrence of disease, the incidence of disease is less severe where there is a higher fertility rate (about 3 kgN/100m2/year) or a preventitatve fungicide program is adopted. • Cynodon hybrid and seashore paspalum cultivars maintained an acceptable to ideal surface being cut between 2.7 mm and 5.0 mm. “Ultradwarf” cultivars can tolerate mowing heights as low as 2.5 mm for short periods but places the plant under high levels of stress. Greens being maintained at a continually lower cutting height (e.g. 2.7 mm) of both species is achievable, but would need to be cut daily for best results. Seashore paspalums performed best when cut at a height of between 2.7 mm and 3.0 mm. If a lower cutting height is adopted, regular and repeated mowings are required to reduce scalping and produce a smooth surface. • At this point in time the optimum rate of nitrogen (N) for the Cynodon hybrids is 3 kg/100m2/year and while the seashore paspalums is 2 to 3 kg/100m2/year. • Dormancy occurred for all Cynodon and seashore paspalum culitvars from north in Brisbane (QLD) to south in Mornington Peninsula (VIC) and west to Novar Gardens (SA). Cynodon and Paspalum growth in both Victoria and South Australia was less favourable as a result of the cooler climates. • After combining the data collected from all eight sites, the results indicated that there can be variation (e.g. turfgrass quality, colour, disease resistance, performace) depending on the site and climatic conditions. Such evidence highlights the need to undertake genotype by environment (G x E) studies on new and old cultivars prior to conversion or establishment. • For a club looking to select either a Cynodon hybrid or seashore paspalum cultivar for use at their club they need to: - Review the research data. - Look at trial plots. - Inspect greens in play that have the new grasses. - Select 2 to 3 cultivars that are considered to be the better types. - Establish them in large (large enough to putt on) plots/nursery/practice putter. Ideally the area should be subjected to wear. - Maintain them exactly as they would be on the golf course/lawn bowls green. This is a critical aspect. Regular mowing, fertilising etc. is essential. - Assess them over at least 2 to 3 years. - Make a selection and establish it in a playing green so that it is subjected to typical wear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project built upon the successful outcomes of a previous project (TU02005) by adding to the database of salt tolerance among warm season turfgrass cultivars, through further hydroponic screening trials. Hydroponic screening trials focussed on new cultivars or cultivars that were not possible to cover in the time available under TU02005, including: 11 new cultivars of Paspalum vaginatum; 13 cultivars of Cynodon dactylon; six cultivars of Stenotaphrum secundatum; one accession of Cynodon transvaalensis; 12 Cynodon dactylon x transvaalensis hybrids; two cultivars of Sporobolus virginicus; five cultivars of Zoysia japonica; one cultivar of Z. macrantha, one common form of Z. tenuifolia and one Z. japonica x tenuifolia hybrid. The relative salinity tolerance of different turfgrasses is quantified in terms of their growth response to increasing levels of salinity, often defined by the salt level that equates to a 50% reduction in shoot yield, or alternatively the threshold salinity. The most salt tolerant species in these trials were Sporobolus virginicus and Paspalum vaginatum, consistent with the findings from TU02005 (Loch, Poulter et al. 2006). Cynodon dactylon showed the largest range in threshold values with some cultivars highly sensitive to salt, while others were tolerant to levels approaching that of the more halophytic grasses. Coupled with the observational and anecdotal evidence of high drought tolerance, this species and other intermediately tolerant species provide options for site specific situations in which soil salinity is coupled with additional challenges such as shade and high traffic conditions. By recognising the fact that a salt tolerant grass is not the complete solution to salinity problems, this project has been able to further investigate sustainable long-term establishment and management practices that maximise the ability of the selected grass to survive and grow under a particular set of salinity and usage parameters. Salt-tolerant turf grasses with potential for special use situations were trialled under field conditions at three sites within the Gold Coast City Council, while three sites, established under TU02005 within the Redland City Council boundaries were monitored for continued grass survival. Several randomised block experiments within Gold Coast City were established to compare the health and longevity of seashore paspalum (Paspalum vaginatum), Manila grass (Zoysia matrella), as well as the more tolerant cultivars of other species like buffalo grass (Stenotaphrum secundatum) and green couch (Cynodon dactylon). Whilst scientific results were difficult to achieve in the field situation, where conditions cannot be controlled, these trials provided valuable observational evidence of the likely survival of these species. Alternatives to laying full sod such as sprigging were investigated, and were found to be more appropriate for areas of low traffic as the establishment time is greater. Trials under controlled and protected conditions successfully achieved a full cover of Paspalum vaginatum from sprigs in a 10 week time frame. Salt affected sites are often associated with poor soil structure. Part of the research investigated techniques for the alleviation of soil compaction frequently found on saline sites. Various methods of soil de-compaction were investigated on highly compacted heavy clay soil in Redlands City. It was found that the heavy duplex soil of marine clay sediments required the most aggressive of treatments in order to achieve limited short-term effects. Interestingly, a well constructed sports field showed a far greater and longer term response to de-compaction operations, highlighting the importance of appropriate construction in the successful establishment and management of turfgrasses on salt affected sites. Fertiliser trials in this project determined plant demand for nitrogen (N) to species level. This work produced data that can be used as a guide when fertilising, in order to produce optimal growth and quality in the major turf grass species used in public parkland. An experiment commenced during TU02005 and monitored further in this project, investigated six representative warm-season turfgrasses to determine the optimum maintenance requirements for fertiliser N in south-east Queensland. In doing so, we recognised that optimum level is also related to use and intensity of use, with high profile well-used parks requiring higher maintenance N than low profile parks where maintaining botanical composition at a lower level of turf quality might be acceptable. Kikuyu (Pennisetum clandestinum) seemed to require the greatest N input (300-400 kg N/ha/year), followed by the green couch (Cynodon dactylon) cultivars ‘Wintergreen’ and ‘FLoraTeX’ requiring approximately 300 kg N/ha/year for optimal condition and growth. ‘Sir Walter’ (Stenotaphrum secundatum) and ‘Sea Isle 1’ (Paspalum vaginatum) had a moderate requirement of approximately 200 kg/ha/year. ‘Aussiblue’ (Digitaria didactyla)maintained optimal growth and quality at 100-200 kg N/ha/year. A set of guidelines has been prepared to provide various options from the construction and establishment of new grounds, through to the remediation of existing parklands by supporting the growth of endemic grasses. They describe a best management process through which salt affected sites should be assessed, remediated and managed. These guidelines, or Best Management Practices, will be readily available to councils. Previously, some high salinity sites have been turfed several times over a number of years (and Council budgets) for a 100% failure record. By eliminating this budgetary waste through targeted workable solutions, local authorities will be more amenable to investing appropriate amounts into these areas. In some cases, this will lead to cost savings as well as resulting in better quality turf. In all cases, however, improved turf quality will be of benefit to ratepayers, directly through increased local use of open space in parks and sportsfields and indirectly by attracting tourists and other visitors to the region bringing associated economic benefits. At the same time, environmental degradation and erosion of soil in bare areas will be greatly reduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assess establishment and management of salt tolerant turf grasses on salt affected parklands.