989 resultados para Graphical Model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel mixture of trees (MoT) graphical model for video segmentation. Each component in this mixture represents a tree structured temporal linkage between super-pixels from the first to the last frame of a video sequence. Our time-series model explicitly captures the uncertainty in temporal linkage between adjacent frames which improves segmentation accuracy. We provide a variational inference scheme for this model to estimate super-pixel labels and their confidences in nearly realtime. The efficacy of our approach is demonstrated via quantitative comparisons on the challenging SegTrack joint segmentation and tracking dataset [23].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the succession of small mammal species after fire in the cerrado (Neotropical savanna) of Central Brazil. Populations of small mammals were sampled with live-trapping techniques in a series of nine sites of different successional age, ranging from 1 to 26 years after fire. Ten species of small mammals were captured through all the seral stages of succession. Species richness ranged from two to seven species by seral stage. The species were arranged in different groups with respect to abundance along the succession: the first was composed of early successional species that peaked <2 years after fire (Calomys callosus, C. tener, Thalpomys cerradensis, Mus musculus, Thylamys velutinus); the second occurred or peaked 2-3 years after fire (Necromys lasiurus, Gracilinanus sp., Oryzomys scoth). Gracilinanus agilis peaked in the last seral stage. Species richness of small mammals showed an abrupt decrease from an average of four species immediately after fire to two species 5-26 years after the last fire. We propose a simple graphical model to explain the pattern of species richness of small mammals after fire in the cerrado. This model assumes that the occurrence of species of small mammals is determined by habitat selection behavior by each species along a habitat gradient. The habitat gradient is defined as the ratio of cover of herbaceous to woody vegetation. The replacement of species results from a trade-off in habitat requirements for the two habitat variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automated identification of vertebrae from X-ray image(s) is an important step for various medical image computing tasks such as 2D/3D rigid and non-rigid registration. In this chapter we present a graphical model-based solution for automated vertebra identification from X-ray image(s). Our solution does not ask for a training process using training data and has the capability to automatically determine the number of vertebrae visible in the image(s). This is achieved by combining a graphical model-based maximum a posterior probability (MAP) estimate with a mean-shift based clustering. Experiments conducted on simulated X-ray images as well as on a low-dose low quality X-ray spinal image of a scoliotic patient verified its performance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: Effective management of multi-resistant organisms is an important issue for hospitals both in Australia and overseas. This study investigates the utility of using Bayesian Network (BN) analysis to examine relationships between risk factors and colonization with Vancomycin Resistant Enterococcus (VRE). Design: Bayesian Network Analysis was performed using infection control data collected over a period of 36 months (2008-2010). Setting: Princess Alexandra Hospital (PAH), Brisbane. Outcome of interest: Number of new VRE Isolates Methods: A BN is a probabilistic graphical model that represents a set of random variables and their conditional dependencies via a directed acyclic graph (DAG). BN enables multiple interacting agents to be studied simultaneously. The initial BN model was constructed based on the infectious disease physician‟s expert knowledge and current literature. Continuous variables were dichotomised by using third quartile values of year 2008 data. BN was used to examine the probabilistic relationships between VRE isolates and risk factors; and to establish which factors were associated with an increased probability of a high number of VRE isolates. Software: Netica (version 4.16). Results: Preliminary analysis revealed that VRE transmission and VRE prevalence were the most influential factors in predicting a high number of VRE isolates. Interestingly, several factors (hand hygiene and cleaning) known through literature to be associated with VRE prevalence, did not appear to be as influential as expected in this BN model. Conclusions: This preliminary work has shown that Bayesian Network Analysis is a useful tool in examining clinical infection prevention issues, where there is often a web of factors that influence outcomes. This BN model can be restructured easily enabling various combinations of agents to be studied.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, we deal with low-complexity near-optimal detection/equalization in large-dimension multiple-input multiple-output inter-symbol interference (MIMO-ISI) channels using message passing on graphical models. A key contribution in the paper is the demonstration that near-optimal performance in MIMO-ISI channels with large dimensions can be achieved at low complexities through simple yet effective simplifications/approximations, although the graphical models that represent MIMO-ISI channels are fully/densely connected (loopy graphs). These include 1) use of Markov random field (MRF)-based graphical model with pairwise interaction, in conjunction with message damping, and 2) use of factor graph (FG)-based graphical model with Gaussian approximation of interference (GAI). The per-symbol complexities are O(K(2)n(t)(2)) and O(Kn(t)) for the MRF and the FG with GAI approaches, respectively, where K and n(t) denote the number of channel uses per frame, and number of transmit antennas, respectively. These low-complexities are quite attractive for large dimensions, i.e., for large Kn(t). From a performance perspective, these algorithms are even more interesting in large-dimensions since they achieve increasingly closer to optimum detection performance for increasing Kn(t). Also, we show that these message passing algorithms can be used in an iterative manner with local neighborhood search algorithms to improve the reliability/performance of M-QAM symbol detection.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Traffic classification using machine learning continues to be an active research area. The majority of work in this area uses off-the-shelf machine learning tools and treats them as black-box classifiers. This approach turns all the modelling complexity into a feature selection problem. In this paper, we build a problem-specific solution to the traffic classification problem by designing a custom probabilistic graphical model. Graphical models are a modular framework to design classifiers which incorporate domain-specific knowledge. More specifically, our solution introduces semi-supervised learning which means we learn from both labelled and unlabelled traffic flows. We show that our solution performs competitively compared to previous approaches while using less data and simpler features. Copyright © 2010 ACM.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Abstract. Latent Dirichlet Allocation (LDA) is a document level language model. In general, LDA employ the symmetry Dirichlet distribution as prior of the topic-words’ distributions to implement model smoothing. In this paper, we propose a data-driven smoothing strategy in which probability mass is allocated from smoothing-data to latent variables by the intrinsic inference procedure of LDA. In such a way, the arbitrariness of choosing latent variables'priors for the multi-level graphical model is overcome. Following this data-driven strategy,two concrete methods, Laplacian smoothing and Jelinek-Mercer smoothing, are employed to LDA model. Evaluations on different text categorization collections show data-driven smoothing can significantly improve the performance in balanced and unbalanced corpora.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, we present an approach to discretizing multivariate continuous data while learning the structure of a graphical model. We derive the joint scoring function from the principle of predictive accuracy, which inherently ensures the optimal trade-off between goodness of fit and model complexity (including the number of discretization levels). Using the so-called finest grid implied by the data, our scoring function depends only on the number of data points in the various discretization levels. Not only can it be computed efficiently, but it is also independent of the metric used in the continuous space. Our experiments with gene expression data show that discretization plays a crucial role regarding the resulting network structure.