994 resultados para Graph G
Resumo:
The minimum interval graph completion problem consists of, given a graph G = ( V, E ), finding a supergraph H = ( V, E ∪ F ) that is an interval graph, while adding the least number of edges |F| . We present an integer programming formulation for solving the minimum interval graph completion problem recurring to a characteri- zation of interval graphs that produces a linear ordering of the maximal cliques of the solution graph.
Resumo:
We define a new graph operator called the P3 intersection graph, P3(G)- the intersection graph of all induced 3-paths in G. A characterization of graphs G for which P-3 (G) is bipartite is given . Forbidden subgraph characterization for P3 (G) having properties of being chordal , H-free, complete are also obtained . For integers a and b with a > 1 and b > a - 1, it is shown that there exists a graph G such that X(G) = a, X(P3( G)) = b, where X is the chromatic number of G. For the domination number -y(G), we construct graphs G such that -y(G) = a and -y (P3(G)) = b for any two positive numbers a > 1 and b. Similar construction for the independence number and radius, diameter relations are also discussed.
Resumo:
Abstract. The edge C4 graph E4(G) of a graph G has all the edges of Gas its vertices, two vertices in E4(G) are adjacent if their corresponding edges in G are either incident or are opposite edges of some C4. In this paper, characterizations for E4(G) being connected, complete, bipartite, tree etc are given. We have also proved that E4(G) has no forbidden subgraph characterization. Some dynamical behaviour such as convergence, mortality and touching number are also studied
Resumo:
A graph G is strongly distance-balanced if for every edge uv of G and every i 0 the number of vertices x with d.x; u/ D d.x; v/ 1 D i equals the number of vertices y with d.y; v/ D d.y; u/ 1 D i. It is proved that the strong product of graphs is strongly distance-balanced if and only if both factors are strongly distance-balanced. It is also proved that connected components of the direct product of two bipartite graphs are strongly distancebalanced if and only if both factors are strongly distance-balanced. Additionally, a new characterization of distance-balanced graphs and an algorithm of time complexity O.mn/ for their recognition, wheremis the number of edges and n the number of vertices of the graph in question, are given
Resumo:
For a set S of vertices and the vertex v in a connected graph G, max x2S d(x, v) is called the S-eccentricity of v in G. The set of vertices with minimum S-eccentricity is called the S-center of G. Any set A of vertices of G such that A is an S-center for some set S of vertices of G is called a center set. We identify the center sets of certain classes of graphs namely, Block graphs, Km,n, Kn −e, wheel graphs, odd cycles and symmetric even graphs and enumerate them for many of these graph classes. We also introduce the concept of center number which is defined as the number of distinct center sets of a graph and determine the center number of some graph classes
Resumo:
Chapter 1 introduces the tools and mechanics necessary for this report. Basic definitions and topics of graph theory which pertain to the report and discussion of automorphic decompositions will be covered in brief detail. An automorphic decomposition D of a graph H by a graph G is a G-decomposition of H such that the intersection of graph (D) @H. H is called the automorhpic host, and G is the automorphic divisor. We seek to find classes of graphs that are automorphic divisors, specifically ones generated cyclically. Chapter 2 discusses the previous work done mainly by Beeler. It also discusses and gives in more detail examples of automorphic decompositions of graphs. Chapter 2 also discusses labelings and their direct relation to cyclic automorphic decompositions. We show basic classes of graphs, such as cycles, that are known to have certain labelings, and show that they also are automorphic divisors. In Chapter 3, we are concerned with 2-regular graphs, in particular rCm, r copies of the m-cycle. We seek to show that rCm has a ρ-labeling, and thus is an automorphic divisor for all r and m. we discuss methods including Skolem type difference sets to create cycle systems and their correlation to automorphic decompositions. In the Appendix, we give classes of graphs known to be graceful and our java code to generate ρ-labelings on rCm.
Resumo:
The eccentric connectivity index of a graph G, ξ^C, was proposed by Sharma, Goswami and Madan. It is defined as ξ^C(G) = ∑ u ∈ V(G) degG(u)εG(u), where degG(u) denotes the degree of the vertex x in G and εG(u) = Max{d(u, x) | x ∈ V (G)}. The eccentric connectivity polynomial is a polynomial version of this topological index. In this paper, exact formulas for the eccentric connectivity polynomial of Cartesian product, symmetric difference, disjunction and join of graphs are presented.
Resumo:
We investigate a conjecture on the cover times of planar graphs by means of large Monte Carlo simulations. The conjecture states that the cover time tau (G(N)) of a planar graph G(N) of N vertices and maximal degree d is lower bounded by tau (G(N)) >= C(d)N(lnN)(2) with C(d) = (d/4 pi) tan(pi/d), with equality holding for some geometries. We tested this conjecture on the regular honeycomb (d = 3), regular square (d = 4), regular elongated triangular (d = 5), and regular triangular (d = 6) lattices, as well as on the nonregular Union Jack lattice (d(min) = 4, d(max) = 8). Indeed, the Monte Carlo data suggest that the rigorous lower bound may hold as an equality for most of these lattices, with an interesting issue in the case of the Union Jack lattice. The data for the honeycomb lattice, however, violate the bound with the conjectured constant. The empirical probability distribution function of the cover time for the square lattice is also briefly presented, since very little is known about cover time probability distribution functions in general.
Resumo:
An (n, d)-expander is a graph G = (V, E) such that for every X subset of V with vertical bar X vertical bar <= 2n - 2 we have vertical bar Gamma(G)(X) vertical bar >= (d + 1) vertical bar X vertical bar. A tree T is small if it has at most n vertices and has maximum degree at most d. Friedman and Pippenger (1987) proved that any ( n; d)- expander contains every small tree. However, their elegant proof does not seem to yield an efficient algorithm for obtaining the tree. In this paper, we give an alternative result that does admit a polynomial time algorithm for finding the immersion of any small tree in subgraphs G of (N, D, lambda)-graphs Lambda, as long as G contains a positive fraction of the edges of Lambda and lambda/D is small enough. In several applications of the Friedman-Pippenger theorem, including the ones in the original paper of those authors, the (n, d)-expander G is a subgraph of an (N, D, lambda)-graph as above. Therefore, our result suffices to provide efficient algorithms for such previously non-constructive applications. As an example, we discuss a recent result of Alon, Krivelevich, and Sudakov (2007) concerning embedding nearly spanning bounded degree trees, the proof of which makes use of the Friedman-Pippenger theorem. We shall also show a construction inspired on Wigderson-Zuckerman expander graphs for which any sufficiently dense subgraph contains all trees of sizes and maximum degrees achieving essentially optimal parameters. Our algorithmic approach is based on a reduction of the tree embedding problem to a certain on-line matching problem for bipartite graphs, solved by Aggarwal et al. (1996).
Resumo:
Loebl, Komlos, and Sos conjectured that if at least half the vertices of a graph G have degree at least some k is an element of N, then every tree with at most k edges is a subgraph of G. We prove the conjecture for all trees of diameter at most 5 and for a class of caterpillars. Our result implies a bound on the Ramsey number r( T, T') of trees T, T' from the above classes.
Resumo:
The skewness sk(G) of a graph G = (V, E) is the smallest integer sk(G) >= 0 such that a planar graph can be obtained from G by the removal of sk(C) edges. The splitting number sp(G) of C is the smallest integer sp(G) >= 0 such that a planar graph can be obtained from G by sp(G) vertex splitting operations. The vertex deletion vd(G) of G is the smallest integer vd(G) >= 0 such that a planar graph can be obtained from G by the removal of vd(G) vertices. Regular toroidal meshes are popular topologies for the connection networks of SIMD parallel machines. The best known of these meshes is the rectangular toroidal mesh C(m) x C(n) for which is known the skewness, the splitting number and the vertex deletion. In this work we consider two related families: a triangulation Tc(m) x c(n) of C(m) x C(n) in the torus, and an hexagonal mesh Hc(m) x c(n), the dual of Tc(m) x c(n) in the torus. It is established that sp(Tc(m) x c(n)) = vd(Tc(m) x c(n) = sk(Hc(m) x c(n)) = sp(Hc(m) x c(n)) = vd(Hc(m) x c(n)) = min{m, n} and that sk(Tc(m) x c(n)) = 2 min {m, n}.
Resumo:
The trade spectrum of a simple graph G is defined to be the set of all t for which it is possible to assemble together t copies of G into a simple graph H, and then disassemble H into t entirely different copies of G. Trade spectra of graphs have applications to intersection problems, and defining sets, of G-designs. In this investigation, we give several constructions, both for specific families of graphs, and for graphs in general.
Resumo:
A graph H is said to divide a graph G if there exists a set S of subgraphs of G, all isomorphic to H, such that the edge set of G is partitioned by the edge sets of the subgraphs in S. Thus, a graph G is a common multiple of two graphs if each of the two graphs divides G.
Resumo:
Let H be a graph. A graph G is said to be H-free if it contains no subgraph isomorphic to H. A graph G is said to be an H-saturated subgraph of a graph K if G is an H-free subgraph of K with the property that for any edge e is an element of E(K)\E(G), G boolean OR {e} is not H-free. We present some general results on K-s,K-t-saturated subgraphs of the complete bipartite graph K-m,K-n and study the problem of finding, for all possible values of q, a C-4-saturated subgraph of K., having precisely q edges. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A G-design of order n is a pair (P,B) where P is the vertex set of the complete graph K-n and B is an edge-disjoint decomposition of K-n into copies of the simple graph G. Following design terminology, we call these copies ''blocks''. Here K-4 - e denotes the complete graph K-4 with one edge removed. It is well-known that a K-4 - e design of order n exists if and only if n = 0 or 1 (mod 5), n greater than or equal to 6. The intersection problem here asks for which k is it possible to find two K-4 - e designs (P,B-1) and (P,B-2) of order n, with \B-1 boolean AND B-2\ = k, that is, with precisely k common blocks. Here we completely solve this intersection problem for K-4 - e designs.