950 resultados para Graph Decomposition
Resumo:
Process Modeling is a widely used concept for understanding, documenting and also redesigning the operations of organizations. The validation and usage of process models is however affected by the fact that only business analysts fully understand them in detail. This is in particular a problem because they are typically not domain experts. In this paper, we investigate in how far the concept of verbalization can be adapted from object-role modeling to process models. To this end, we define an approach which automatically transforms BPMN process models into natural language texts and combines different techniques from linguistics and graph decomposition in a flexible and accurate manner. The evaluation of the technique is based on a prototypical implementation and involves a test set of 53 BPMN process models showing that natural language texts can be generated in a reliable fashion.
Resumo:
A graph G is a common multiple of two graphs H-1 and H-2 if there exists a decomposition of G into edge-disjoint copies of H-1 and also a decomposition of G into edge-disjoint copies of H-2. In this paper, we consider the case where H-1 is the 4-cycle C-4 and H-2 is the complete graph with n vertices K-n. We determine, for all positive integers n, the set of integers q for which there exists a common multiple of C-4 and K-n having precisely q edges. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
For all odd integers n greater than or equal to 1, let G(n) denote the complete graph of order n, and for all even integers n greater than or equal to 2 let G,, denote the complete graph of order n with the edges of a 1-factor removed. It is shown that for all non-negative integers h and t and all positive integers n, G, can be decomposed into h Hamilton cycles and t triangles if and only if nh + 3t is the number of edges in G(n). (C) 2004 Wiley Periodicals, Inc.
Resumo:
An edge-colored graph is a graph H together with a function f:E(H) → C where C is a set of colors. Given an edge-colored graph H, the graph induced by the edges of color c C is denoted by H(c). Let G, H, and J be graphs and let μ be a positive integer. A (J, H, G, μ) edge-colored graph decomposition is a set S = {H 1,H 2,...,H t} of edge-colored graphs with color set C = {c 1, c 2,..., c k} such that Hi ≅ H for 1 ≤ i ≤ t; Hi (cj) ≅ G for 1 ≤ i ≤ t and ≤ j ≤ k; and for j = 1, 2,..., k, each edge of J occurs in exactly μ of the graphs H 1(c j ), H 2(c j ),..., H t (c j ). Let Q 3 denote the 3-dimensional cube. In this paper, we find necessary and sufficient conditions on n, μ and G for the existence of a (K n ,Q 3,G, μ) edge-colored graph decomposition. © Birkhäuser Verlag, Basel 2007.
Resumo:
The Internet has grown in size at rapid rates since BGP records began, and continues to do so. This has raised concerns about the scalability of the current BGP routing system, as the routing state at each router in a shortest-path routing protocol will grow at a supra-linearly rate as the network grows. The concerns are that the memory capacity of routers will not be able to keep up with demands, and that the growth of the Internet will become ever more cramped as more and more of the world seeks the benefits of being connected. Compact routing schemes, where the routing state grows only sub-linearly relative to the growth of the network, could solve this problem and ensure that router memory would not be a bottleneck to Internet growth. These schemes trade away shortest-path routing for scalable memory state, by allowing some paths to have a certain amount of bounded “stretch”. The most promising such scheme is Cowen Routing, which can provide scalable, compact routing state for Internet routing, while still providing shortest-path routing to nearly all other nodes, with only slightly stretched paths to a very small subset of the network. Currently, there is no fully distributed form of Cowen Routing that would be practical for the Internet. This dissertation describes a fully distributed and compact protocol for Cowen routing, using the k-core graph decomposition. Previous compact routing work showed the k-core graph decomposition is useful for Cowen Routing on the Internet, but no distributed form existed. This dissertation gives a distributed k-core algorithm optimised to be efficient on dynamic graphs, along with with proofs of its correctness. The performance and efficiency of this distributed k-core algorithm is evaluated on large, Internet AS graphs, with excellent results. This dissertation then goes on to describe a fully distributed and compact Cowen Routing protocol. This protocol being comprised of a landmark selection process for Cowen Routing using the k-core algorithm, with mechanisms to ensure compact state at all times, including at bootstrap; a local cluster routing process, with mechanisms for policy application and control of cluster sizes, ensuring again that state can remain compact at all times; and a landmark routing process is described with a prioritisation mechanism for announcements that ensures compact state at all times.
Resumo:
The purpose of this paper is to describe a new decomposition construction for perfect secret sharing schemes with graph access structures. The previous decomposition construction proposed by Stinson is a recursive method that uses small secret sharing schemes as building blocks in the construction of larger schemes. When the Stinson method is applied to the graph access structures, the number of such “small” schemes is typically exponential in the number of the participants, resulting in an exponential algorithm. Our method has the same flavor as the Stinson decomposition construction; however, the linear programming problem involved in the construction is formulated in such a way that the number of “small” schemes is polynomial in the size of the participants, which in turn gives rise to a polynomial time construction. We also show that if we apply the Stinson construction to the “small” schemes arising from our new construction, both have the same information rate.
Resumo:
Real world business process models may consist of hundreds of elements and have sophisticated structure. Although there are tasks where such models are valuable and appreciated, in general complexity has a negative influence on model comprehension and analysis. Thus, means for managing the complexity of process models are needed. One approach is abstraction of business process models-creation of a process model which preserves the main features of the initial elaborate process model, but leaves out insignificant details. In this paper we study the structural aspects of process model abstraction and introduce an abstraction approach based on process structure trees (PST). The developed approach assures that the abstracted process model preserves the ordering constraints of the initial model. It surpasses pattern-based process model abstraction approaches, allowing to handle graph-structured process models of arbitrary structure. We also provide an evaluation of the proposed approach.
Resumo:
In the mining optimisation literature, most researchers focused on two strategic-level and tactical-level open-pit mine optimisation problems, which are respectively termed ultimate pit limit (UPIT) or constrained pit limit (CPIT). However, many researchers indicate that the substantial numbers of variables and constraints in real-world instances (e.g., with 50-1000 thousand blocks) make the CPIT’s mixed integer programming (MIP) model intractable for use. Thus, it becomes a considerable challenge to solve the large scale CPIT instances without relying on exact MIP optimiser as well as the complicated MIP relaxation/decomposition methods. To take this challenge, two new graph-based algorithms based on network flow graph and conjunctive graph theory are developed by taking advantage of problem properties. The performance of our proposed algorithms is validated by testing recent large scale benchmark UPIT and CPIT instances’ datasets of MineLib in 2013. In comparison to best known results from MineLib, it is shown that the proposed algorithms outperform other CPIT solution approaches existing in the literature. The proposed graph-based algorithms leads to a more competent mine scheduling optimisation expert system because the third-party MIP optimiser is no longer indispensable and random neighbourhood search is not necessary.
Resumo:
Parallel execution of computational mechanics codes requires efficient mesh-partitioning techniques. These mesh-partitioning techniques divide the mesh into specified number of submeshes of approximately the same size and at the same time, minimise the interface nodes of the submeshes. This paper describes a new mesh partitioning technique, employing Genetic Algorithms. The proposed algorithm operates on the deduced graph (dual or nodal graph) of the given finite element mesh rather than directly on the mesh itself. The algorithm works by first constructing a coarse graph approximation using an automatic graph coarsening method. The coarse graph is partitioned and the results are interpolated onto the original graph to initialise an optimisation of the graph partition problem. In practice, hierarchy of (usually more than two) graphs are used to obtain the final graph partition. The proposed partitioning algorithm is applied to graphs derived from unstructured finite element meshes describing practical engineering problems and also several example graphs related to finite element meshes given in the literature. The test results indicate that the proposed GA based graph partitioning algorithm generates high quality partitions and are superior to spectral and multilevel graph partitioning algorithms.
Resumo:
In this chapter we look at JOSTLE, the multilevel graph-partitioning software package, and highlight some of the key research issues that it addresses. We first outline the core algorithms and place it in the context of the multilevel refinement paradigm. We then look at issues relating to its use as a tool for parallel processing and, in particular, partitioning in parallel. Since its first release in 1995, JOSTLE has been used for many mesh-based parallel scientific computing applications and so we also outline some enhancements such as multiphase mesh-partitioning, heterogeneous mapping and partitioning to optimise subdomain shape
Resumo:
In this paper, we shall critically examine a special class of graph matching algorithms that follow the approach of node-similarity measurement. A high-level algorithm framework, namely node-similarity graph matching framework (NSGM framework), is proposed, from which, many existing graph matching algorithms can be subsumed, including the eigen-decomposition method of Umeyama, the polynomial-transformation method of Almohamad, the hubs and authorities method of Kleinberg, and the kronecker product successive projection methods of Wyk, etc. In addition, improved algorithms can be developed from the NSGM framework with respects to the corresponding results in graph theory. As the observation, it is pointed out that, in general, any algorithm which can be subsumed from NSGM framework fails to work well for graphs with non-trivial auto-isomorphism structure.
Resumo:
In this study, we investigate an adaptive decomposition and ordering strategy that automatically divides examinations into difficult and easy sets for constructing an examination timetable. The examinations in the difficult set are considered to be hard to place and hence are listed before the ones in the easy set in the construction process. Moreover, the examinations within each set are ordered using different strategies based on graph colouring heuristics. Initially, the examinations are placed into the easy set. During the construction process, examinations that cannot be scheduled are identified as the ones causing infeasibility and are moved forward in the difficult set to ensure earlier assignment in subsequent attempts. On the other hand, the examinations that can be scheduled remain in the easy set.
Within the easy set, a new subset called the boundary set is introduced to accommodate shuffling strategies to change the given ordering of examinations. The proposed approach, which incorporates different ordering and shuffling strategies, is explored on the Carter benchmark problems. The empirical results show that the performance of our algorithm is broadly comparable to existing constructive approaches.
Resumo:
This paper proposes a cluster partitioning technique to calculate improved upper bounds to the optimal solution of maximal covering location problems. Given a covering distance, a graph is built considering as vertices the potential facility locations, and with an edge connecting each pair of facilities that attend a same client. Coupling constraints, corresponding to some edges of this graph, are identified and relaxed in the Lagrangean way, resulting in disconnected subgraphs representing smaller subproblems that are computationally easier to solve by exact methods. The proposed technique is compared to the classical approach, using real data and instances from the available literature. © 2010 Edson Luiz França Senne et al.