999 resultados para Grand unified theories


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The idea of grand unification in a minimal supersymmetric SU(5) x SU(5) framework is revisited. It is shown that the unification of gauge couplings into a unique coupling constant can be achieved at a high-energy scale compatible with proton decay constraints. This requires the addition of minimal particle content at intermediate energy scales. In particular, the introduction of the SU(2)(L) triplets belonging to the (15, 1)+((15) over bar, 1) representations, as well as of the scalar triplet Sigma(3) and octet Sigma(8) in the (24, 1) representation, turns out to be crucial for unification. The masses of these intermediate particles can vary over a wide range, and even lie in the TeV region. In contrast, the exotic vector-like fermions must be heavy enough and have masses above 10(10) GeV. We also show that, if the SU(5) x SU(5) theory is embedded into a heterotic string scenario, it is not possible to achieve gauge coupling unification with gravity at the perturbative string scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the supersymmetric standard model three-loop beta-functions for gauge and Yukawa couplings and consider the effect of three-loop corrections on the standard running coupling analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We look for minimal chiral sets of fermions beyond the standard model that are anomaly free and, simultaneously, vectorlike particles with respect to color SU(3) and electromagnetic U(1). We then study whether the addition of such particles to the standard model particle content allows for the unification of gauge couplings at a high energy scale, above 5.0 x 10(15) GeV so as to be safely consistent with proton decay bounds. The possibility to have unification at the string scale is also considered. Inspired in grand unified theories, we also search for minimal chiral fermion sets that belong to SU(5) multiplets, restricted to representations up to dimension 50. It is shown that, in various cases, it is possible to achieve gauge unification provided that some of the extra fermions decouple at relatively high intermediate scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss theoretical and phenomenological aspects of two-Higgs-doublet extensions of the Standard Model. In general, these extensions have scalar mediated flavour changing neutral currents which are strongly constrained by experiment. Various strategies are discussed to control these flavour changing scalar currents and their phenomenological consequences are analysed. In particular, scenarios with natural flavour conservation are investigated, including the so-called type I and type II models as well as lepton-specific and inert models. Type III models are then discussed, where scalar flavour changing neutral currents are present at tree level, but are suppressed by either a specific ansatz for the Yukawa couplings or by the introduction of family symmetries leading to a natural suppression mechanism. We also consider the phenomenology of charged scalars in these models. Next we turn to the role of symmetries in the scalar sector. We discuss the six symmetry-constrained scalar potentials and their extension into the fermion sector. The vacuum structure of the scalar potential is analysed, including a study of the vacuum stability conditions on the potential and the renormalization-group improvement of these conditions is also presented. The stability of the tree level minimum of the scalar potential in connection with electric charge conservation and its behaviour under CP is analysed. The question of CP violation is addressed in detail, including the cases of explicit CP violation and spontaneous CP violation. We present a detailed study of weak basis invariants which are odd under CP. These invariants allow for the possibility of studying the CP properties of any two-Higgs-doublet model in an arbitrary Higgs basis. A careful study of spontaneous CP violation is presented, including an analysis of the conditions which have to be satisfied in order for a vacuum to violate CP. We present minimal models of CP violation where the vacuum phase is sufficient to generate a complex CKM matrix, which is at present a requirement for any realistic model of spontaneous CP violation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LHC searches for supersymmetry currently focus on strongly produced sparticles, which are copiously produced if gluinos and squarks have masses of a few hundred GeV. However, in supersymmetric models with heavy scalars, as favored by the decoupling solution to the SUSY flavor and CP problems, and m((g) over tilde) greater than or similar to 500 GeV as indicated by recent LHC results, chargino-neutralino ((W) over tilde (+/-)(1)(Z) over tilde (2)) production is the dominant cross section for m((W) over tilde1) similar to m((Z) over tilde2) < m(<(g)over tilde>)/3 at LHC with root s = 7 TeV (LHC7). Furthermore, if m((Z) over tilde1) + (m (Z) over tilde) less than or similar to m((Z) over tilde2) less than or similar to m((Z) over tilde1) + m(h), then (Z) over tilde (2) dominantly decays via (Z) over tilde (2) -> (Z) over tilde (1)Z, while (W) over tilde (1) decays via (W) over tilde (1) -> (Z) over tilde W-1. We investigate the LHC7 reach in the W Z + (sic)T channel (for both leptonic and hadronic decays of the W boson) in models with and without the assumption of gaugino mass universality. In the case of the mSUGRA/CMSSM model with heavy squark masses, the LHC7 discovery reach in the W Z+ (sic)T channel becomes competetive with the reach in the canonical (sic)T + jets channel for integrated luminosities similar to 30 fb(-1). We also present the LHC7 reach for a simplified model with arbitrary m((Z) over tilde1) and m((W) over tilde1) similar to m((Z) over tilde2). Here, we find a reach of up to m((W) over tilde1) similar to 200 (250) GeV for 10 (30) fb(-1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die elektrische Ladung des Neutrons ist eng mit der Frage nach der Existenz der Ladungsquantisierung verknüpft: Sollte das Neutron eine Ladung tragen, kann die Ladung nicht in Einheiten der Elementarladung e quantisiert sein.rnrnIm Rahmen der Elektrodynamik und des minimalen Standardmodells ist die Quantisierung der Ladung nicht enthalten. Eine mögliche Neutronenladung würde ihnen also nicht widersprechen. Allerdings geht sie aus den Weiterentwicklungen dieser Modelle hervor. Die sogenannten Grand Unified Theories sagen die Möglichkeit des Protonenzerfalls vorher. Dieser ist nur möglich, wenn die Ladung quantisiert ist.rnrnDurch die Messung einer elektrischen Ladung des Neutrons können die verschiedenen Theorien überprüft werden.rnrnIm Rahmen dieser Arbeit wurde eine Apparatur entwickelt, mit der die elektrische Ladung des Neutrons gemessen werden kann. Als Grundlage diente das Prinzip einer Messung von 1988. Mit einem flüssigen Neutronenspiegel aus Fomblin ist es zum ersten mal überhaupt gelungen, einen flüssigen Spiegel für Neutronen einzusetzen. Durch diese und andere Verbesserungen konnte die Sensitivität der Apparatur um einen Faktor 5 im Vergleich zum Experimentrnvon 1988 verbessert werden. Eine mögliche Ladung des Neutrons kann mit δq_n = 2,15·10^(−20)·e/√day gemessen werden. rnrnDie Messung der elektrischen Ladung soll im Winter 2014 durchgeführt werden. Bis dahin soll die Präzision aufrnδq_n = 1,4·10^(−21)·e/√day erhöht werden.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose an SU(5) grand unified model with an invisible axion and the unification of the three coupling constants which is in agreement with the values, at M(Z), of alpha, alpha(s), and sin(2)theta(W). A discrete, anomalous, Z(13) symmetry implies that the Peccei-Quinn symmetry is an automatic symmetry of the classical Lagrangian protecting, at the same time, the invisible axion against possible semiclassical gravity effects. Although the unification scale is of the order of the Peccei-Quinn scale the proton is stabilized by the fact that in this model the standard model fields form the SU(5) multiplets completed by new exotic fields and, also, because it is protected by the Z(13) symmetry.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For over 50 years, the Satisfaction of Search effect, and more recently known as the Subsequent Search Miss (SSM) effect, has plagued the field of radiology. Defined as a decrease in additional target accuracy after detecting a prior target in a visual search, SSM errors are known to underlie both real-world search errors (e.g., a radiologist is more likely to miss a tumor if a different tumor was previously detected) and more simplified, lab-based search errors (e.g., an observer is more likely to miss a target ‘T’ if a different target ‘T’ was previously detected). Unfortunately, little was known about this phenomenon’s cognitive underpinnings and SSM errors have proven difficult to eliminate. However, more recently, experimental research has provided evidence for three different theories of SSM errors: the Satisfaction account, the Perceptual Set account, and the Resource Depletion account. A series of studies examined performance in a multiple-target visual search and aimed to provide support for the Resource Depletion account—a first target consumes cognitive resources leaving less available to process additional targets.

To assess a potential mechanism underlying SSM errors, eye movements were recorded in a multiple-target visual search and were used to explore whether a first target may result in an immediate decrease in second-target accuracy, which is known as an attentional blink. To determine whether other known attentional distractions amplified the effects of finding a first target has on second-target detection, distractors within the immediate vicinity of the targets (i.e., clutter) were measured and compared to accuracy for a second target. To better understand which characteristics of attention were impacted by detecting a first target, individual differences within four characteristics of attention were compared to second-target misses in a multiple-target visual search.

The results demonstrated that an attentional blink underlies SSM errors with a decrease in second-target accuracy from 135ms-405ms after detection or re-fixating a first target. The effects of clutter were exacerbated after finding a first target causing a greater decrease in second-target accuracy as clutter increased around a second-target. The attentional characteristics of modulation and vigilance were correlated with second- target misses and suggest that worse attentional modulation and vigilance are predictive of more second-target misses. Taken together, these result are used as the foundation to support a new theory of SSM errors, the Flux Capacitor theory. The Flux Capacitor theory predicts that once a target is found, it is maintained as an attentional template in working memory, which consumes attentional resources that could otherwise be used to detect additional targets. This theory not only proposes why attentional resources are consumed by a first target, but encompasses the research in support of all three SSM theories in an effort to establish a grand, unified theory of SSM errors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Motivated by the dark matter and the baryon asymmetry problems, we analyze a complex singlet extension of the Standard Model with a Z(2) symmetry (which provides a dark matter candidate). After a detailed two-loop calculation of the renormalization group equations for the new scalar sector, we study the radiative stability of the model up to a high energy scale (with the constraint that the 126 GeV Higgs boson found at the LHC is in the spectrum) and find it requires the existence of a new scalar state mixing with the Higgs with a mass larger than 140 GeV. This bound is not very sensitive to the cutoff scale as long as the latter is larger than 10(10) GeV. We then include all experimental and observational constraints/measurements from collider data, from dark matter direct detection experiments, and from the Planck satellite and in addition force stability at least up to the grand unified theory scale, to find that the lower bound is raised to about 170 GeV, while the dark matter particle must be heavier than about 50 GeV.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An analysis of cosmic string breaking with the formation of black holes attached to the ends reveals a remarkable feature: the black holes can be correlated or uncorrelated. We find that, as a consequence, the number-of-states enhancement factor in the action governing the formation of uncorrelated black holes is twice the one for a correlated pair. We argue that when an uncorrelated pair forms at the ends of the string, the physics involved is more analogous to thermal nucleation than to particle-antiparticle creation. Also, we analyze the process of intercommuting strings induced by black hole annihilation and merging. Finally, we discuss the consequences for grand unified strings. The process whereby uncorrelated black holes are formed yields a rate which significantly improves over those previously considered, but still not enough to modify string cosmology. 1995 The American Physical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis deals with some aspects of the Physics of the early universe, like phase transitions, bubble nucleations and premodial density perturbations which lead to the formation structures in the universe. Quantum aspects of the gravitational interaction play an essential role in retical high-energy physics. The questions of the quantum gravity are naturally connected with early universe and Grand Unification Theories. In spite of numerous efforts, the various problems of quantum gravity remain still unsolved. In this condition, the consideration of different quantum gravity models is an inevitable stage to study the quantum aspects of gravitational interaction. The important role of gravitationally coupled scalar field in the physics of the early universe is discussed in this thesis. The study shows that the scalar-gravitational coupling and the scalar curvature did play a crucial role in determining the nature of phase transitions that took place in the early universe. The key idea in studying the formation structure in the universe is that of gravitational instability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Designing is a heterogeneous, fuzzily defined, floating field of various activities and chunks of ideas and knowledge. Available theories about the foundations of designing as presented in "the basic PARADOX" (Jonas and Meyer-Veden 2004) have evoked the impression of Babylonian confusion. We located the reasons for this "mess" in the "non-fit", which is the problematic relation of theories and subject field. There seems to be a comparable interface problem in theory-building as in designing itself. "Complexity" sounds promising, but turns out to be a problematic and not really helpful concept. I will argue for a more precise application of systemic and evolutionary concepts instead, which - in my view - are able to model the underlying generative structures and processes that produce the visible phenomenon of complexity. It does not make sense to introduce a new fashionable meta-concept and to hope for a panacea before having clarified the more basic and still equally problematic older meta-concepts. This paper will take one step away from "theories of what" towards practice and doing and try to have a closer look at existing process models or "theories of how" to design instead. Doing this from a systemic perspective leads to an evolutionary view of the process, which finally allows to specify more clearly the "knowledge gaps" inherent in the design process. This aspect has to be taken into account as constitutive of any attempt at theory-building in design, which can be characterized as a "practice of not-knowing". I conclude, that comprehensive "unified" theories, or methods, or process models run aground on the identified knowledge gaps, which allow neither reliable models of the present, nor reliable projections into the future. Consolation may be found in performing a shift from the effort of adaptation towards strategies of exaptation, which means the development of stocks of alternatives for coping with unpredictable situations in the future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We discuss the mass splitting between the the top and bottom quarks in a technicolor scenario. The model proposed here contains a left-right electroweak gauge group. An extended technicolor group and mirror fermions are introduced. The top-bottom quark mass splitting turns out to be intimately connected to the breaking of the left-right gauge symmetry. Weak isospin violation occurs within the experimental limits.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study signals for the production of superparticles at the Fermilab Tevatron in supergravity scenarios based on the grand unified group SO(10). The breaking of this group introduces extra contributions to the masses of all scalars, described by a single new parameter. We find that varying this parameter can considerably change the size of various expected signals studied in the literature, with different numbers of jets and/or charged leptons in the final state. The ratios of these signals can thus serve as a diagnostic to detect or constrain deviations from the much-studied scenario where all scalar masses are universal at the GUT scale. Moreover, under favorable circumstances some of these signals, and/or new signals involving hard b jets, should be observable at the next run of the Fermilab Tevatron collider even if the average scalar mass lies well above the gluino mass. ©2000 The American Physical Society.