1000 resultados para Grain size analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The upper 1200 m of pre-Pliocene sediment recovered by Cape Roberts Project (CRP) drilling off the Victoria Land coast of Antarctica between 1997-1999 has been subdivided into 54 unconformity-bound stratigraphic sequences, spanning the period c. 32 to 17 Ma. The sequences are recognised on the basis of the cyclical vertical stacking of their constituent lithofacies, which are enclosed by erosion surfaces produced during the grounding of the advancing ice margin onto the sea floor. Each sequence represents deposition in a range of offshore shelf to coastal glacimarine sedimentary environments during oscillations in the ice margin across the Western Ross Sea shelf, and coeval fluctuations in water depth. This paper applies spectral analysis techniques to depth- and time-series of sediment grain size (500 samples) for intervals of the core with adequate chronological data. Time series analysis of 0.5-l.0m-spaced grainsize data spanning sequences 9-11 (CRP-2/2A) and sequences 1-7 (CRP-3) suggests that the length of individual sequences correspond to Milankovitch frequencies, probably 41 k.y., but possibly as low as 100 k.y. Higher frequency periodic components at 23 k.y. (orbital precession) and 15-10 k.y. (sub-orbital) are recognised at the intrasequence-scale, and may represent climatic cycles akin to the ice rafting episodes described in the North Atlantic Ocean during the Quaternary. The cyclicity recorded by glacimarine sequences in CRP core provides direct evidence from the periphery of Antarctica for orbital oscillations in the size of the Oligocene-Early Miocene East Antarctic Ice Sheet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grain-size analyses by sieve and Sedigraph are presented for 115 samples of core from CRP-3, 12 km off the coast of south Victoria Land. The data provide a useful check on visual core descriptions. The geographic setting for the strata sampled, some 790 m of early Oligocene nearshore marine sediments with a persistent glacial influence, is reviewed, and sediment textures interpreted in that context. Sand textures from the CRP-3 samples in the lower part of the core suggest that deposition was initially primarily wave-dominated, but that at times the influence of the waves was over-ridden by episodes of rapid sedimentation. Sedimentary cycles, recognised in the visual description of the core above 485 mbsf, show an increasing proportion of mudstone in the middle of each cycle above 330 mbsf that is interpreted to record periodic sedimentation in deeper water. Sandstone textures in the lower and upper parts of each cycle are interpreted to record departure from and return to shoreface deposition with changes in sea level. Mudstone textures above 176 mbsf indicate sedimentation below wave base. Many of the textures in both sand and mud samples show the coarse 'tail' characteristic of ice-rafted debris, but others do not, indicating ice-free periods. Many sandstones below c. 200 mbsf have virtually no silt, but significant amounts of clay (6 to 17%) that is thought to be of post-depositional origin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this note is to present results of grain size analyses from 118 samples of the CRP-2/2A core using sieve and Sedigraph techniques. The samples were selected to represent the range of facies encountered, and tend to become more widely spaced with depth. Fifteen came from the upper 27 m of Quaternary and Pliocene sediments, 62 from the early Miocene-late Oligocene strata (27 to 307 mbsf), and 41 from the early Oligocene strata beneath (307 to 624 mbsf). The results are intended to provide reference data for lithological descriptions in the core logs (Cape Roberts Science Team, 1999), and to help with facies interpretation. The analytical technique used for determining size frequency of the sand fraction in our samples (sieving) is simple, physical and widely practised for over a century. Thus it provides a useful reference point for analyses produced by other faster and more sophisticated techniques, such as the Malvern laser particle size analysis system (Woolfe et al., 2000), and estimates derived from measurements taken with down-hole logging tools (Bücker, pers. com., 1999).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contourites in the Gulf of Cádiz preserve a unique archive of Mediterranean Outflow Water (MOW) variability over the past 5.3 Ma. In our study we investigate the potential of geochemical data obtained by XRF scanning to decipher bottom current processes and paleoclimatic evolution at two different sites drilled through contourite deposits in the northern Gulf of Cadiz: Site U1387, which is bathed by the upper MOW core, and Site U1389, located more proximal to the Straits of Gibraltar. The lack of major downslope transport at both locations during the Pleistocene makes them ideal locations for the purpose of our study. The results indicate that the Zr/Al ratio, representing the relative enrichment of heavy minerals (zircon) over less dense alumosilicates under strong bottom current flow, is the most useful indicator for a semi-quantitative assessment of current strength. While most elements are biased by current-related processes, the bromine record, representing organic content, preserves the most pristine climate signal rather independent of grain size changes. Hence, Br can be used for chronostratigraphy and site-to-site correlation in addition to stable isotope stratigraphy. Based on these findings we reconstructed MOW variability for Marine Isotope Stages 1-5 using the Zr/Al ratio from Site U1387. The results reveal abrupt, millennial-scale variations of MOW strength during Greenland Stadials (GS) and Interstadials (GI) with strong MOW during GS and glacial Terminations and a complex behavior during Heinrich Stadials. Millennial-scale variability persisting during periods of poorly expressed GS/GI cyclicities implies a strong internal oscillation of the Mediterranean/North Atlantic climate system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grain-size, terrigenous element and rock magnetic remanence data of Quaternary marine sediments retrieved at the NW African continental margin off Gambia (gravity core GeoB 13602-1, 13°32.71' N, 17°50.96'W) were jointly analyzed by end-member (EM) unmixing methods to distinguish and budget past terrigenous fluxes. We compare and cross-validate the identified single-parameter EM systems and develop a numerical strategy to calculate associated multi-parameter EM properties. One aeolian and two fluvial EMs were found. The aeolian EM is much coarser than the fluvial EMs and is associated with a lower goethite/hematite ratio, a higher relative concentration of magnetite and lower Al/Si and Fe/K ratios. Accumulation rates and grain sizes of the fluvial sediment appear to be primarily constrained by shore distance (i.e., sea-level fluctuations) and to a lesser extent by changes in hinterland precipitation. High dust fluxes occurred during the Last Glacial Maximum (LGM) and during Heinrich Stadials (HS) while the fluvial input remained unchanged. Our approach reveals that the LGM dust fluxes were ~7 times higher than today's. However, by far the highest dust accumulation occurred during HS 1 (~300 g m**-2 yr** -1), when dust fluxes were ~80 fold higher than today. Such numbers have not yet been reported for NW Africa, and emphasize strikingly different environmental conditions during HSs. They suggest that deflation rate and areal extent of HSs dust sources were much larger due to retreating vegetation covers. Beyond its regional and temporal scope, this study develops new, in principle, generally applicable strategies for multi-method end-member interpretation, validation and flux budgeting calibration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The upper Miocene to Pleistocene sediments recovered at ODP Sites 745 and 746 in the Australian-Antarctic Basin are characterized by cyclic facies changes. Sedimentological investigations of a detailed Quaternary section reveal that facies A is dominated by a high content of siliceous microfossils, a relatively low terrigenous sediment content, an ice-rafted component, low concentrations of fine sediment particles, and a relatively high smectite content. This facies corresponds to interglacial sedimentary conditions. Facies B, in contrast, is characteristic of glacial conditions and is dominated by a large amount of terrigenous material and a smaller opaline component. There is also a prominent ice-rafted component. The microfossils commonly are reworked and broken. The clay mineral assemblages show higher proportions of glacially derived illite and chlorite. A combination of four different processes, attributed to glacial-interglacial cycles, was responsible for the cyclic facies changes during Quaternary time: transport by gravity, ice, and current and changes in primary productivity. Of great importance was the movement of the grounding line of the ice shelves, which directly influenced the intensity of ice rafting and of gravitational sediment transport to the deep sea. The extension of the ice shelves was also responsible for the generation of cold and erosive Antarctic Bottom Water, which controlled the grain-size distribution, particularly of the fine fraction, in the investigated area.