911 resultados para Grain Refining
Resumo:
Demand on magnesium and its alloys is increased significantly in the automotive industry because of their great potential in reducing the weight of components, thus resulting in improvement in fuel efficiency of the vehicle. To date, most of Mg products have been fabricated by casting, especially, by die-casting because of its high productivity, suitable strength, acceptable quality & dimensional accuracy and the components produced through sand, gravity and low pressure die casting are small extent. In fact, higher solidification rate is possible only in high pressure die casting, which results in finer grain size. However, achieving high cooling rate in gravity casting using sand and permanent moulds is a difficult task, which ends with a coarser grain nature and exhibit poor mechanical properties, which is an important aspect of the performance in industrial applications. Grain refinement is technologically attractive because it generally does not adversely affect ductility and toughness, contrary to most other strengthening methods. Therefore formation of fine grain structure in these castings is crucial, in order to improve the mechanical properties of these cast components. Therefore, the present investigation is “GRAIN REFINEMENT STUDIES ON Mg AND Mg-Al BASED ALLOYS”. The primary objective of this present investigation is to study the effect of various grain refining inoculants (Al-4B, Al- 5TiB2 master alloys, Al4C3, Charcoal particles) on Pure Mg and Mg-Al alloys such as AZ31, AZ91 and study their grain refining mechanisms. The second objective of this work is to study the effect of superheating process on the grain size of AZ31, AZ91 Mg alloys with and without inoculants addition. In addition, to study the effect of grain refinement on the mechanical properties of Mg and Mg-Al alloys. The thesis is well organized with seven chapters and the details of the studies are given below in detail.
Resumo:
Carbon inoculation has no effect on magnesium alloys that do not contain aluminium. The hypothesis proposed in a recent article [Scripta Materialia 49 (2003) 1129] that segregation of carbon plays a major role in the grain refinement of magnesium alloys by carbon inoculation is inconsistent with many of the observed facts. The Al4C3 or Al-C-O hypothesis, which is supported by experimental observations, is still the most reasonable mechanism proposed to date for the grain refinement of magnesium alloys by carbon inoculation. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
High purity Mg-Al type alloys have a naturally fine grain size compared to commercial purity alloys with the same basic composition. This is referred to as native grain refinement. It is shown that native grain refinement occurs only in magnesium alloys containing aluminium. The mechanism is attributed to the Al4C3 particles existing in these alloys. (c) 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
To be able to determine the grain size obtained from the addition of a grain refining master alloy, the relationship between grain size (d), solute content (defined by the growth restriction factor Q), and the potency and number density of nucleant particles needs to be understood. A study was undertaken on aluminium alloys where additions of TiB2 and Ti were made to eight wrought aluminum alloys covering a range of alloying elements and compositions. It was found from analysis of the data that d = a/(3)root pct TiB2 + b/Q. From consideration of the experimental data and from further analysis of previously published data, it is shown that the coefficients a and b relate to characteristics of the nucleant particles added by a grain refiner. The term a is related to the maximum density of active TiB2 nucleant particles within the melt, while b is related to their potency. By using the analysis methodology presented in this article, the performance characteristics of different master alloys were defined and the effects of Zr and Si on the poisoning of grain refinement were illustrated.
Resumo:
The addition of SiC particles effectively grain refined a range of Mg-Al alloys. The greatest reductions in grain size were found for the alloys with lower Al contents. The presence of Mg2Si in the microstructure after that SiC addition, and consideration of phase equilibria suggested that the SiC transforms to Al4C3, and this is the actual nucleant. The addition of Mn poisoned the grain refining effect of the SiC addition, probably due to the formation of less potent Al-Mn-carbides. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Manganese is a grain refiner for high purity Mg-3%Al, Mg-6%Al, Mg-9%Al, and commercial AZ31 (Mg-3%Al-1%Zn) alloys when introduced in the form of an Al-60%Mn master alloy splatter but the use of pure Mn flakes and ALTAB (TM) Mn75 tablets shows no grain refinement. Long time holding of the melt at 730 degrees C leads to an increase in grain size. The mechanism is attributed to the presence of all epsilon-AlMn phase (hexagonal close-packed) in the master alloy splatter. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A new zirconium-rich magnesium-zirconium master alloy (designated AM-cast) has been developed by the CRC for Cast Metals Manufacturing in collaboration with Australian Magnesium Corporation for use as a grain refiner for magnesium alloys that do not contain aluminium. This work describes the microstructural characteristics of this new grain refiner and its grain refining ability when added to different magnesium alloys under various conditions (alloying temperature from 680 °C to 750 °C; weight of melt from 1 kg to 150 kg and sample thickness from 7 mm to 62 mm). Owing to its highly alloyable microstructure, AM-cast can be readily introduced into molten magnesium at any temperature when assisted by a few minutes of stirring or puddling. Little sludge has been found at the bottom of the alloying vessel in these trials due to the fine zirconium particles contained in the master alloy. The recovery of zirconium is normally in the range from 40% to 60% with respect to 1% zirconium addition as the master alloy. It is shown that this new master alloy is an excellent grain refiner for aluminium-free magnesium alloys.
Resumo:
研究了在玻璃基底上镀制Al2O3和Cr过渡层对Ag膜反射率及附着力的影响.分光光度计测试了Ag膜的反射率,结果表明,与Cr过渡层相比,Al2O3过渡层对Ag膜反射率的降低相对较小;而且,随着Al2O3厚度的增加,Ag膜的反射率先增大后减小.XRD与AES测试表明,引入Al2O3或Cr可明显细化Ag晶粒,减弱Ag膜(111)织构;Al2O3作过渡层时,Al原子向Ag层中扩散显著;而Cr作过渡层时,只有少量Cr原子扩散进入Ag层.因此,Al2O3作过渡层能显著增强薄膜与玻璃基体之间的附着力.
Resumo:
The microstructures and mechanical properties of Mg-6Zn-5Al-4Gd-1RE (RE = Ce or Y) alloys were investigated. The addition of Ce or Y obviously refines the grain size for the Mg-6Zn-5Al-4Gd-based alloy, while the Y element has a better refining effect. The Ce and Y show different grain-refining mechanisms: Ce addition mostly promotes the growth of secondary dendrite, while Y addition mainly increases the heterogeneous nucleation sites.
Resumo:
The macrostructure of an alloy solidification in the raw state is of utmost importance due to its influence on mechanical properties. A structure showing columnar grains is generally undesirable in most applications of cast products and grain refining aims to suppress the formation of these grains and get a fine-grained equiaxed structure that improves the supply of liquid metal and the mechanical properties, as yield strength and tensile strength limit, as well as the tendency of formation of hot cracks. The type and size of grains formed are determined by chemical composition, cooling rate and the use of inoculum for grain refining. Titanium and boron are the major refiners in the aluminum industry and can be added to the molten metal in the form of alloys such as Al-Ti, Al-Ti-B or Al-B. In this paper we will discuss the information obtained from cooling curves and first derivative of the cooling curve to obtain the thermal parameters that influence the process of grain refining alloy AA 356.0
Resumo:
The present work aims to study the characteristics of the alloy Al - 7 % Si - 0 , 3Mg ( AA356 ) , more specifically characterize the macrostructure and microstructure and mechanical properties of the alloy ingots AA356 obtained in metal molds and sand molds for power studying the structures through the difference of cooling rates . This alloy is explained by the fact of referring league has excellent combination of properties such as low solidification shrinkage and good fluidity, good weldability , high wear resistance , high strength to weight ratio, has wide application in general engineering , and particularly in the automotive and aerospace engineering . In this work we will verify this difference in properties through two different cooling rates . We monitor the solid solidification temperatures by thermocouples building with them the cooling curve as a tool that will aid us to evaluate the effectiveness of the grain refining because it achieved with some important properties of the alloy as the latent heat of solidification fraction the liquid and solid temperatures, the total solidification time, and identify the presence of inoculants for grain refinement. Thermal analysis will be supported by the study of graphic software “Origin “will be achieved where the cooling curve and its first derivative that is the cooling rate. Made thermal analysis, analysis will be made in macrographs ingots obtained for observation of macrostructures obtained in both types of ingots and also analysis of micrographs where sampling will occur in strategic positions ingots to correlate with the microstructure. Finally will be collecting data from Brinell hardness of ingots and so then correlating the properties of their respective ingots with cooling rate. We found that obtained with cast metal ingots showed superior properties to the ingots obtained with sand mold
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
To capitalise on the strengthening potential of zirconium as a potent grain refiner for magnesium alloys, the mechanisms of adding zirconium to magnesium and its subsequent grain refining action need to be understood. Using a Mg-33.3Zr master alloy (Zirmax supplied by Magnesium Elektron Ltd) as a zirconium alloying additive, the influence of different alloying conditions on the dissolution of zirconium in magnesium was investigated. It was found that owing to the highly alloyable microstructure of Zirmax, the dissolution of zirconium was generally complete within a few minutes in the temperature range 730 to 780degreesC. Prolonging and/or intensifying stirring were found to have no conspicuous influence on further enhancing the dissolution of zirconium. In all cases studied, the average grain size increased with increasing holding time at temperature while the total zirconium content decreased. The finest grain structure and highest total zirconium content corresponded to sampling immediately after stirring. Pick up of iron by molten magnesium from the mild steel crucibles used for melting and holding, was significantly delayed or avoided in the temperature range 730 to 780degreesC by coating the crucibles with boron nitride. It is therefore feasible to conduct zirconium alloying at 730degreesC without the need of a considerable excess of Zirmax addition using a properly coated or lined steel crucible.
Resumo:
Grain size is one of the most important microstructural characteristics determining the mechanical properties and therefore the service performance of polycrystalline materials. Heterogeneous nucleation involves the addition or in situ formation of potent nuclei in the system to promote nucleation events, leading to a fine grain structure. This paper reports experimental results using graphite and SiC as potential grain refining agents to form in situ nuclei for Mg in Mg-Al alloys, and demonstrates the key role of Al4C3 in grain refilling this important alloy system. This insight will contribute to the design and development of the most cost effective, eco-friendly grain refining agents for Mg-Al alloys. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The electroslag refining technique is one of the modern tools which is capable of imparting superior mechanical and chemical properties to metals and alloys. Refining usually results in the elimination of a number of casting or solidification defects, such as shrinkage porosity, gas porosity, pipe, micro- and macro segregation. Remelting also imparts a directional grain structure apart from refining the size of the inclusions, grains and precipitates. This technique has over the years been used widely and successfully to improve the mechanical and chemical properties of steels and alloy steels which are used in the nuclear, missile, aerospace and marine industries for certain critical applications. But the application of ESR to aluminium and its alloys is only recent. This paper investigates the response of an aluminium alloy (corresponding to the Indian Specification IS: 7670) to ESR. Based on theoretical considerations and microstructural evidence it elucidates how ESR of aluminium alloys differs from that of ferrous alloys. The improvement achieved in mechanical properties of the alloy is correlated with the microstructure.