124 resultados para Gracilaria vermiculophylla
Resumo:
Background: Red algae are primitive photosynthetic eukaryotes, whose spores are ideal subjects for studies of photosynthesis and development. Although the development of red alga spores has received considerable research attention, few studies have focused on the detailed morphological and photosynthetic changes that occur during the early development of tetraspores of Gracilaria vermiculophylla (Ohmi) Papenfuss (Gracilariales, Rhodophyta). Herein, we documented these changes in this species of red algae. Results: In the tetraspores, we observed two types of division, cruciate and zonate, and both could develop into multicellular bodies (disks). During the first 84 hours, tetraspores divided several times, but the diameter of the disks changed very little; thereafter, the diameter increased significantly. Scanning electron microscopy observations and analysis of histological sections revealed that the natural shape of the disk remains tapered over time, and the erect frond grows from the central protrusion of the disk. Cultivation of tissue from excised disks demonstrated that the central protrusion of the disk is essential for initiation of the erect frond. Photosynthetic (i.e., PSII) activities were measured using chlorophyll fluorescence analysis. The results indicated that freshly released tetraspores retained limited PSII photosynthetic capabilities; when the tetraspores attached to a substrate, those capabilities increased significantly. In the disk, the PSII activity of both marginal and central cells was similar, although some degree of morphological polarity was present; the PSII photosynthetic capabilities in young germling exhibited an apico-basal gradient. Conclusions: Attachment of tetraspores to a substrate significantly enhanced their PSII photosynthetic capabilities, and triggered further development. The central protrusion of the disk is the growth point, may have transfer of nutritive material with the marginal cells. Within the young germling, the hetero-distribution of PSII photosynthetic capabilities might be due to the differences in cell functions.
Resumo:
Microwave-assisted extraction (MAE) of agar from Gracilaria vermiculophylla, produced in an integrated multitrophic aquaculture (IMTA) system, from Ria de Aveiro (northwestern Portugal), was tested and optimized using response surface methodology. The influence of the MAE operational parameters (extraction time, temperature, solvent volume and stirring speed) on the physical and chemical properties of agar (yield, gel strength, gelling and melting temperatures, as well as, sulphate and 3,6-anhydro-Lgalactose contents) was evaluated in a 2^4 orthogonal composite design. The quality of the extracted agar compared favorably with the attained using traditional extraction (2 h at 85ºC) while reducing drastically extraction time, solvent consumption and waste disposal requirements. Agar MAE optimum results were: an yield of 14.4 ± 0.4%, a gel strength of 1331 ± 51 g/cm2, 40.7 ± 0.2 _C gelling temperature, 93.1 ± 0.5ºC melting temperature, 1.73 ± 0.13% sulfate content and 39.4 ± 0.3% 3,6-anhydro-L-galactose content. Furthermore, this study suggests the feasibility of the exploitation of G. vermiculophylla grew in IMTA systems for agar production.
Resumo:
The capacity of the East Asian seaweed Gracilaria vermiculophylla ("Ogonori") for production of prostaglandin E2 from arachidonic acid occasionally causes food poisoning after ingestion. During the last two decades the alga has been introduced to Europe and North America. Non-native populations have been shown to be generally less palatable to marine herbivores than native populations. We hypothesized that the difference in palatability among populations could be due to differences in the algal content of prostaglandins. We therefore compared the capacity for wound-activated production of prostaglandins and other eicosatetraenoid oxylipins among five native populations in East Asia and seven non-native populations in Europe and NW Mexico, using a targeted metabolomics approach. In two independent experiments non-native populations exhibited a significant tendency to produce more eicosatetraenoids than native populations after acclimation to identical conditions and subsequent artificial wounding. Fourteen out of 15 eicosatetraenoids that were detected in experiment I and all 19 eicosatetraenoids that were detected in experiment II reached higher mean concentrations in non-native than in native specimens. The datasets generated in both experiments are contained in http://doi.pangaea.de/10.1594/PANGAEA.855008. Wounding of non-native specimens resulted on average in 390 % more 15-keto-PGE2, in 90 % more PGE2, in 37 % more PGA2 and in 96 % more 7,8-di-hydroxy eicosatetraenoic acid than wounding of native specimens. The dataset underlying this statement is contained in http://doi.pangaea.de/10.1594/PANGAEA.854847. Not only PGE2, but also PGA2 and dihydroxylated eicosatetraenoic acid are known to deter various biological enemies of G. vermiculophylla that cause tissue or cell wounding, and in the present study the latter two compounds also repelled the mesograzer Littorina brevicula. The dataset underlying this statement is contained in http://doi.pangaea.de/10.1594/PANGAEA.854922. Non-native populations of G. vermiculophylla are thus more defended against herbivory than native populations. This increased capacity for activated chemical defense may have contributed to their invasion success and at the same time it poses an elevated risk for human food safety.
Resumo:
We compared the responses of native and non-native populations of the seaweed Gracilaria vermiculophylla to heat shock in common garden-type experiments. Specimens from six native populations in East Asia and from eight non-native populations in Europe and on the Mexican Pacific coast were acclimated to two sets of identical conditions before their resistance to heat shock was examined. The experiments were carried out twice - one time in the native range in Qingdao, China and one time in the invaded range in Kiel, Germany - to rule out effects of specific local conditions. In both testing sites the non-native populations survived heat shock significantly better than the native populations, The data underlying this statement are presented in https://doi.pangaea.de/10.1594/PANGAEA.859335. After three hours of heat shock G. vermiculophylla exhibited increased levels of heat shock protein 70 (HSP70) and of a specific isoform of haloperoxidase, suggesting that both enzymes could be required for heat shock stress management. However, the elevated resistance toward heat shock of non-native populations only correlated with an increased constitutive expression of heat shock protein 70 (HSP70). The haloperoxidase isoform was more prominent in native populations, suggesting that not only increased HSP70 expression, but also reduced allocation into haloperoxidase expression after heat shock was selected during the invasion history. The data describing expression of HSP70 and three different isoforms of haloperoxidase are presented in https://doi.pangaea.de/10.1594/PANGAEA.859358.