906 resultados para Gossip Sheet
Resumo:
The first Rotary Club was created in February 1905, by Chicago lawyer Paul P. Harris. Harris envisioned a club which would bring members of the business community closer together. As his vision grew more members were acquired. In order to accommodate everyone, meetings were held at each of the member’s place of business; hence the name Rotary Club was adopted. A wagon wheel was chosen as an appropriate symbol to denote the club; which today has become the cogwheel. By the close of its first year the club had thirty members. Slowly Rotary Clubs began emerging across the country and by 1910 they had become International by moving North to Canada. By 1921 Rotary representation was present in every Continent and in 1922 the name Rotary International had been approved. The Rotary Club of St. Catharines came into existence on May 19, 1921 under the Charter President Canon Bill Broughall. The Club’s beginnings were humble with only twenty-five members; however, by their seventy-fifth anniversary the club had grown to one hundred and forty-four. The Rotary Club of St. Catharines is a non-profit charity, prescribing to the motto Service above Self. This motto is demonstrated through the Clubs numerous contributions to society both locally and internationally. The Club raises funds, supports exchange programs, and participates in community service work. Some of the organizations which have benefited from the Clubs donations; include, Easter Seals, the Niagara Peninsula Children’s Centre, and the Youth Exchange Program.
Resumo:
-
Resumo:
We consider boundary layer flow of a micropolar fluid driven by a porous stretching sheet. A similarity solution is defined, and numerical solutions using Runge-Kutta and quasilinearisation schemes are obtained. A perturbation analysis is also used to derive analytic solutions to first order in the perturbing parameter. The resulting closed form solutions involve relatively complex expressions, and the analysis is made more tractable by a combination of offline and online work using a computational algebra system (CAS). For this combined numerical and analytic approach, the perturbation analysis yields a number of benefits with regard to the numerical work. The existence of a closed form solution helps to discriminate between acceptable and spurious numerical solutions. Also, the expressions obtained from the perturbation work can provide an accurate description of the solution for ranges of parameters where the numerical approaches considered here prove computationally more difficult.
Resumo:
The structure-building phenomena within clay aggregates are governed by forces acting between clay particles. Measurements of such forces are important to understand in order to manipulate the aggregate structure for applications such as dewatering of mineral processing tailings. A parallel particle orientation is required when conducting XRD investigation on the oriented samples and conduct force measurements acting between basal planes of clay mineral platelets using at. force microscopy (AFM). To investigate how smectite clay platelets were oriented on silicon wafer substrate when dried from suspension range of methods like SEM, XRD and AFM were employed. From these investigations, we conclude that high clay concns. and larger particle diams. (up to 5 μm) in suspension result in random orientation of platelets in the substrate. The best possible laminar orientation in the clay dry film, represented in the XRD 0 0 1/0 2 0 intensity ratio of 47 was obtained by drying thin layers from 0.02 wt.% clay suspensions of the natural pH. Conducted AFM investigations show that smectite studied in water based electrolytes show very long-range repulsive forces lower in strength than electrostatic forces from double-layer repulsion. It was suggested that these forces may have structural nature. Smectite surface layers rehydrate in water environment forms surface gel with spongy and cellular texture which cushion approaching AFM probe. This structural effect can be measured in distances larger than 1000 nm from substrate surface and when probe penetrate this gel layer, structural linkages are forming between substrate and clay covered probe. These linkages prevent subsequently smooth detachments of AFM probe on way back when retrieval. This effect of tearing new formed structure apart involves larger adhesion-like forces measured in retrieval. It is also suggested that these effect may be enhanced by the nano-clay particles interaction.
Resumo:
In this study, cell sheets comprising multilayered porcine bone marrow stromal cells (BMSC) were assembled with fully interconnected scaffolds made from medical-grade polycaprolactone–calcium phosphate (mPCL–CaP), for the engineering of structural and functional bone grafts. The BMSC sheets were harvested from culture flasks and wrapped around pre-seeded composite scaffolds. The layered cell sheets integrated well with the scaffold/cell construct and remained viable, with mineralized nodules visible both inside and outside the scaffold for up to 8 weeks culture. Cells within the constructs underwent classical in vitro osteogenic differentiation with the associated elevation of alkaline phosphatase activity and bone-related protein expression. In vivo, two sets of cell-sheet-scaffold/cell constructs were transplanted under the skin of nude rats. The first set of constructs (554mm3) were assembled with BMSC sheets and cultured for 8 weeks before implantation. The second set of constructs (10104mm3) was implanted immediately after assembly with BMSC sheets, with no further in vitro culture. For both groups, neo cortical and well-vascularised cancellous bone were formed within the constructs with up to 40% bone volume. Histological and immunohistochemical examination revealed that neo bone tissue formed from the pool of seeded BMSC and the bone formation followed predominantly an endochondral pathway, with woven bone matrix subsequently maturing into fully mineralized compact bone; exhibiting the histological markers of native bone. These findings demonstrate that large bone tissues similar to native bone can be regenerated utilizing BMSC sheet techniques in conjunction with composite scaffolds whose structures are optimized from a mechanical, nutrient transport and vascularization perspective.
Resumo:
Similarity solutions for flow over an impermeable, non-linearly (quadratic) stretching sheet were studied recently by Raptis and Perdikis (Int. J. Non-linear Mech. 41 (2006) 527–529) using a stream function of the form ψ=αxf(η)+βx2g(η). A fundamental error in their problem formulation is pointed out. On correction, it is shown that similarity solutions do not exist for this choice of ψ
Resumo:
This paper focuses on malicious workplace gossip from the perspective of those targeted by this dark form of organisational communication. Findings from a large exemplarian action research project are reported that suggest malicious gossip can be an influential form of power that strongly contributes to counterproductive organisational behaviour. The discussion draws upon the emergent themes from the research to highlight the negative consequences of malicious gossip for those targeted and their organisations, and in so doing, elaborates on the phenomenon of workplace mobbing. This research highlights the importance of recognising gossip as an effective, though dark, form of power and the value of rational discourse for improving organisational communication.
Resumo:
This study describes the design of a biphasic scaffold composed of a Fused Deposition Modeling scaffold (bone compartment) and an electrospun membrane (periodontal compartment) for periodontal regeneration. In order to achieve simultaneous alveolar bone and periodontal ligament regeneration a cell-based strategy was carried out by combining osteoblast culture in the bone compartment and placement of multiple periodontal ligament (PDL) cell sheets on the electrospun membrane. In vitro data showed that the osteoblasts formed mineralized matrix in the bone compartment after 21 days in culture and that the PDL cell sheet harvesting did not induce significant cell death. The cell-seeded biphasic scaffolds were placed onto a dentin block and implanted for 8 weeks in an athymic rat subcutaneous model. The scaffolds were analyzed by μCT, immunohistochemistry and histology. In the bone compartment, a more intense ALP staining was obtained following seeding with osteoblasts, confirming the μCT results which showed higher mineralization density for these scaffolds. A thin mineralized cementum-like tissue was deposited on the dentin surface for the scaffolds incorporating the multiple PDL cell sheets, as observed by H&E and Azan staining. These scaffolds also demonstrated better attachment onto the dentin surface compared to no attachment when no cell sheets were used. In addition, immunohistochemistry revealed the presence of CEMP1 protein at the interface with the dentine. These results demonstrated that the combination of multiple PDL cell sheets and a biphasic scaffold allows the simultaneous delivery of the cells necessary for in vivo regeneration of alveolar bone, periodontal ligament and cementum. © 2012 Elsevier Ltd.
Resumo:
Assurance of learning (AoL) is an important process in quality education, designed to measure the accomplishment of educational aims at the core of an institution’s programs, whilst encouraging faculty to continuously develop and improve the programs and courses. This paper reports on a study of Australian business schools to investigate current AoL practices through semi structured interviews with senior faculty leaders followed by focus group interviews with groups of senior program leaders and groups of academic teaching staff. Initial findings indicate there are significant challenges in encouraging academic staff to commit to the process and recognise the benefits of assuring learning. The differences in understanding between the various leaders and the academics were highlighted through the different focus groups. Leaders’ stressed strategic issues such as staff engagement and change, while academics focussed on process issues such as teaching graduate attributes and external accreditation. Understanding the differences in the perspectives of leaders and faculty is important, as without a shared understanding between the two groups, there is likely to be limited engagement, which creates difficulties in developing effective assurance of learning processes. Findings indicate that successful strategies developed to foster shared values on assurance of learning include: strong senior leaders’ commitment; developing champions among program and unit level staff; providing professional development opportunities; promoting and celebrating success and effectiveness; and ensuring an inclusive process with academics of all levels collaborating in the development and implementation of the process.
Resumo:
This chapter represents the analytical solution of two-dimensional linear stretching sheet problem involving a non-Newtonian liquid and suction by (a) invoking the boundary layer approximation and (b) using this result to solve the stretching sheet problem without using boundary layer approximation. The basic boundary layer equations for momentum, which are non-linear partial differential equations, are converted into non-linear ordinary differential equations by means of similarity transformation. The results reveal a new analytical procedure for solving the boundary layer equations arising in a linear stretching sheet problem involving a non-Newtonian liquid (Walters’ liquid B). The present study throws light on the analytical solution of a class of boundary layer equations arising in the stretching sheet problem.
Resumo:
In this paper, we present gas sensing properties of Pt/graphene-like nano-sheets towards hydrogen gas. The graphene-like nano-sheets were produced via the reduction of spray-coated graphite oxide deposited on SiC substrates by hydrazine vapor. Structural and morphological characterizations of the graphene sheets were analyzed by scanning electron and atomic force microscopy. Current-voltage and dynamic responses of the sensors were investigated towards different concentrations of hydrogen gas in a synthetic air mixture at 100°C. A voltage shift of 100 mV was recorded at 1 mA reverse bias current.
Resumo:
This article reports on the design and implementation of a computer-aided sheet nesting system (CASNS) for the nesting of two-dimensional irregular-shaped sheet-metal blanks on a given sheet stock or coil stock. The system is designed by considering several constraints of sheet-metal stamping operations, such as bridge width and grain orientation, and design requirements such as maximizing the strength of the part hen subsequent bending is involved, minimization of scrap, and economic justification for'a single or multiple station operation. Through many practical case studies, the system proves its efficiency, effectiveness and usefulness.
Resumo:
This article reports on the design and implementation of a Computer-Aided Die Design System (CADDS) for sheet-metal blanks. The system is designed by considering several factors, such as the complexity of blank geometry, reduction in scrap material, production requirements, availability of press equipment and standard parts, punch profile complexity, and tool elements manufacturing method. The interaction among these parameters and how they affect designers' decision patterns is described. The system is implemented by interfacing AutoCAD with the higher level languages FORTRAN 77 and AutoLISP. A database of standard die elements is created by parametric programming, which is an enhanced feature of AutoCAD. The greatest advantage achieved by the system is the rapid generation of the most efficient strip and die layouts, including information about the tool configuration.
Resumo:
This paper discusses the results of tests on the shear capacity of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheet. The shear transfer mechanism of the specimens reinforced with CFRP sheet was studied. The factors affecting the shear capacity of reinforced concrete columns strengthened with CFRP sheet were analyzed. Several suggestions such as the number of layers, width and tensile strength of the CFRP sheet are proposed for this new strengthening technique. Finally, a simple and practical design method is presented in the paper. The calculated results of the suggested method are shown to be in good agreement with the test results. The suggested design method can be used in evaluating the shear capacity of reinforced concrete columns strengthened with CFRP sheet.