797 resultados para Good Sleepers


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Heart failure is a serious condition estimated to affect 1.5-2.0% of the Australian population with a point prevalence of approximately 1% in people aged 50-59 years, 10% in people aged 65 years or more and over 50% in people aged 85 years or over (National Heart Foundation of Australian and the Cardiac Society of Australia and New Zealand, 2006). Sleep disturbances are a common complaint of persons with heart failure. Disturbances of sleep can worsen heart failure symptoms, impair independence, reduce quality of life and lead to increased health care utilisation in patients with heart failure. Previous studies have identified exercise as a possible treatment for poor sleep in patients without cardiac disease however there is limited evidence of the effect of this form of treatment in heart failure. Aim: The primary objective of this study was to examine the effect of a supervised, hospital-based exercise training programme on subjective sleep quality in heart failure patients. Secondary objectives were to examine the association between changes in sleep quality and changes in depression, exercise performance and body mass index. Methods: The sample for the study was recruited from metropolitan and regional heart failure services across Brisbane, Queensland. Patients with a recent heart failure related hospital admission who met study inclusion criteria were recruited. Participants were screened by specialist heart failure exercise staff at each site to ensure exercise safety prior to study enrolment. Demographic data, medical history, medications, Pittsburgh Sleep Quality Index score, Geriatric Depression Score, exercise performance (six minute walk test), weight and height were collected at Baseline. Pittsburgh Sleep Quality Index score, Geriatric Depression Score, exercise performance and weight were repeated at 3 months. One hundred and six patients admitted to hospital with heart failure were randomly allocated to a 3-month disease-based management programme of education and self-management support including standard exercise advice (Control) or to the same disease management programme as the Control group with the addition of a tailored physical activity program (Intervention). The intervention consisted of 1 hour of aerobic and resistance exercise twice a week. Programs were designed and supervised by an exercise specialist. The main outcome measure was achievement of a clinically significant change (.3 points) in global Pittsburgh Sleep Quality score. Results: Intervention group participants reported significantly greater clinical improvement in global sleep quality than Control (p=0.016). These patients also exhibited significant improvements in component sleep disturbance (p=0.004), component sleep quality (p=0.015) and global sleep quality (p=0.032) after 3 months of supervised exercise intervention. Improvements in sleep quality correlated with improvements in depression (p<0.001) and six minute walk distance (p=0.04). When study results were examined categorically, with subjects classified as either "poor" or "good" sleepers, subjects in the Control group were significantly more likely to report "poor" sleep at 3 months (p=0.039) while Intervention participants were likely to report "good" sleep at this time (p=0.08). Conclusion: Three months of supervised, hospital based, aerobic and resistance exercise training improved subjective sleep quality in patients with heart failure. This is the first randomised controlled trial to examine the role of aerobic and resistance exercise training in the improvement of sleep quality for patients with this disease. While this study establishes exercise as a therapy for poor sleep quality, further research is needed to investigate the effect of exercise training on objective parameters of sleep in this population.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose This study aimed to determine the feasibility and acceptability of actigraphy to monitor sleep quality and quantity in healthy self-rated good sleeper adults at home-based settings. Method Sixteen healthy volunteers (age > 18) were invited to participate. Each participant was provided with a wrist actigraph device to be worn for 24-hour/day for seven consecutive days to monitor their sleep-wake patterns. Actigraphy data were downloaded using-proprietary software to generate an individual-sleep report. Participants also completed a set of self-reported Health Related Quality of Life (HRQOL) using WHO (five) Well Being Index (WBI) questionnaires. Results Actigraphy was well accepted by all participants. Only 43.8% of the participants achieved normal total sleep time (TST) and 62.5% had a mean sleep efficiency value below the normal range. Despite a reduced quality of sleep among the participants, the self-reported HRQOL scores produced by the WHO-5 WBI showed a “fair” to “good” among the participants. Conclusions To maintain healthy well-being, it is vital to have efficient and quality sleep. Insufficient and poor sleep may contribute to various health problems and hazardous outcomes. People often believe they have normal and efficient sleep, not realising they may be developing poor sleep habits. This study found that actigraphy can be easily utilized to monitor sleep-wake patterns at home-based settings. We proposed that actigraphy could be adapted for use in the primary care settings (e.g. community pharmacy) to improve the sleep health management in the community.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present thesis study is a systematic investigation of information processing at sleep onset, using auditory event-related potentials (ERPs) as a test of the neurocognitive model of insomnia. Insomnia is an extremely prevalent disorder in society resulting in problems with daytime functioning (e.g., memory, concentration, job performance, mood, job and driving safety). Various models have been put forth in an effort to better understand the etiology and pathophysiology of this disorder. One of the newer models, the neurocognitive model of insomnia, suggests that chronic insomnia occurs through conditioned central nervous system arousal. This arousal is reflected through increased information processing which may interfere with sleep initiation or maintenance. The present thesis employed event-related potentials as a direct method to test information processing during the sleep-onset period. Thirteen poor sleepers with sleep-onset insomnia and 1 2 good sleepers participated in the present study. All poor sleepers met the diagnostic criteria for psychophysiological insomnia and had a complaint of problems with sleep initiation. All good sleepers reported no trouble sleeping and no excessive daytime sleepiness. Good and poor sleepers spent two nights at the Brock University Sleep Research Laboratory. The first night was used to screen for sleep disorders; the second night was used to investigate information processing during the sleep-onset period. Both groups underwent a repeated sleep-onsets task during which an auditory oddball paradigm was delivered. Participants signalled detection of a higher pitch target tone with a button press as they fell asleep. In addition, waking alert ERPs were recorded 1 hour before and after sleep on both Nights 1 and 2.As predicted by the neurocognitive model of insomnia, increased CNS activity was found in the poor sleepers; this was reflected by their smaller amplitude P2 component seen during wake of the sleep-onset period. Unlike the P2 component, the Nl, N350, and P300 did not vary between the groups. The smaller P2 seen in our poor sleepers indicates that they have a deficit in the sleep initiation processes. Specifically, poor sleepers do not disengage their attention from the outside environment to the same extent as good sleepers during the sleep-onset period. The lack of findings for the N350 suggest that this sleep component may be intact in those with insomnia and that it is the waking components (i.e., Nl, P2) that may be leading to the deficit in sleep initiation. Further, it may be that the mechanism responsible for the disruption of sleep initiation in the poor sleepers is most reflected by the P2 component. Future research investigating ERPs in insomnia should focus on the identification of the components most sensitive to sleep disruption. As well, methods should be developed in order to more clearly identify the various types of insomnia populations in research contexts (e.g., psychophysiological vs. sleep-state misperception) and the various individual (personality characteristics, motivation) and environmental factors (arousal-related variables) that influence particular ERP components. Insomnia has serious consequences for health, safety, and daytime functioning, thus research efforts should continue in order to help alleviate this highly prevalent condition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Imaging studies have shown reduced frontal lobe resources following total sleep deprivation (TSD). The anterior cingulate cortex (ACC) in the frontal region plays a role in performance monitoring and cognitive control; both error detection and response inhibition are impaired following sleep loss. Event-related potentials (ERPs) are an electrophysiological tool used to index the brain's response to stimuli and information processing. In the Flanker task, the error-related negativity (ERN) and error positivity (Pe) ERPs are elicited after erroneous button presses. In a Go/NoGo task, NoGo-N2 and NoGo-P3 ERPs are elicited during high conflict stimulus processing. Research investigating the impact of sleep loss on ERPs during performance monitoring is equivocal, possibly due to task differences, sample size differences and varying degrees of sleep loss. Based on the effects of sleep loss on frontal function and prior research, it was expected that the sleep deprivation group would have lower accuracy, slower reaction time and impaired remediation on performance monitoring tasks, along with attenuated and delayed stimulus- and response-locked ERPs. In the current study, 49 young adults (24 male) were screened to be healthy good sleepers and then randomly assigned to a sleep deprived (n = 24) or rested control (n = 25) group. Participants slept in the laboratory on a baseline night, followed by a second night of sleep or wake. Flanker and Go/NoGo tasks were administered in a battery at 1O:30am (i.e., 27 hours awake for the sleep deprivation group) to measure performance monitoring. On the Flanker task, the sleep deprivation group was significantly slower than controls (p's <.05), but groups did not differ on accuracy. No group differences were observed in post-error slowing, but a trend was observed for less remedial accuracy in the sleep deprived group compared to controls (p = .09), suggesting impairment in the ability to take remedial action following TSD. Delayed P300s were observed in the sleep deprived group on congruent and incongruent Flanker trials combined (p = .001). On the Go/NoGo task, the hit rate (i.e., Go accuracy) was significantly lower in the sleep deprived group compared to controls (p <.001), but no differences were found on false alarm rates (i.e., NoGo Accuracy). For the sleep deprived group, the Go-P3 was significantly smaller (p = .045) and there was a trend for a smaller NoGo-N2 compared to controls (p = .08). The ERN amplitude was reduced in the TSD group compared to controls in both the Flanker and Go/NoGo tasks. Error rate was significantly correlated with the amplitude of response-locked ERNs in control (r = -.55, p=.005) and sleep deprived groups (r = -.46, p = .021); error rate was also correlated with Pe amplitude in controls (r = .46, p=.022) and a trend was found in the sleep deprived participants (r = .39, p =. 052). An exploratory analysis showed significantly larger Pe mean amplitudes (p = .025) in the sleep deprived group compared to controls for participants who made more than 40+ errors on the Flanker task. Altered stimulus processing as indexed by delayed P3 latency during the Flanker task and smaller amplitude Go-P3s during the Go/NoGo task indicate impairment in stimulus evaluation and / or context updating during frontal lobe tasks. ERN and NoGoN2 reductions in the sleep deprived group confirm impairments in the monitoring system. These data add to a body of evidence showing that the frontal brain region is particularly vulnerable to sleep loss. Understanding the neural basis of these deficits in performance monitoring abilities is particularly important for our increasingly sleep deprived society and for safety and productivity in situations like driving and sustained operations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’insomnie, une condition fréquemment retrouvée dans la population, se caractérise d’abord par une difficulté à initier ou à maintenir le sommeil et/ou par des éveils précoces le matin ou encore par un sommeil non-réparateur. Lorsqu’elle n’est pas accompagnée par des troubles psychiatriques ou médicaux ou un autre trouble de sommeil et qu’elle perdure plus de 6 mois on parle alors d’insomnie primaire chronique. Selon certains, cette condition serait associée à un état d’hyperéveil caractérisé par une augmentation de l’activité autonome sympathique durant le sommeil et l’éveil. Le baroréflexe est un important mécanisme de contrôle à court terme des fluctuations de la tension artérielle (TA) et de la fréquence cardiaque agissant sur le cœur et les vaisseaux sanguins par l’entremise du système nerveux autonome. On appelle sensibilité baroréceptive (SBR) la capacité du baroréflexe de réagir et de contrôler les fluctuations de TA en modulant le rythme cardiaque. De manière générale, la SBR serait augmentée durant la nuit par rapport à la journée. Aussi, il semblerait que le baroréflexe soit impliqué dans le phénomène de baisse physiologique de la TA pendant la nuit. Or, des données de notre laboratoire ont démontré une augmentation de la TA systolique au cours de la nuit ainsi qu’une atténuation de la baisse nocturne de TA systolique chez des sujets avec insomnie primaire chronique comparé à des témoins bons dormeurs. De plus, il a été démontré que le baroréflexe était altéré de façon précoce dans plusieurs troubles cardiovasculaires et dans l’hypertension artérielle. Or, il semblerait que l’insomnie soit accompagnée d’un risque accru de développement de l’hypertension artérielle. Ces études semblent aller dans le sens d’une altération des mécanismes de régulation de la TA dans l’insomnie. Par ailleurs, une réduction de la SBR serait aussi impliquée dans des états associés à une augmentation de l’activité autonome sympathique. Ainsi, nous nous sommes demandé si le baroréflexe pouvait constituer un des mécanismes de contrôle de la TA qui serait altéré dans l’insomnie et pourrait être impliqué dans l’augmentation de l’activité sympathique qui semble accompagner l’insomnie. Jusqu’à présent, le baroréflexe reste inexploré dans l’insomnie. L’objectif principal de ce mémoire était d’évaluer de façon non-invasive la SBR à l’éveil et en sommeil chez 11 sujets atteints d’insomnie primaire chronique comparé à 11 témoins bons dormeurs. L’évaluation du baroréflexe a été effectuée de façon spontanée par la méthode de l’analyse en séquence et par le calcul du coefficient alpha obtenu par l’analyse spectrale croisée de l’intervalle RR et de la TA systolique. De façon concomitante, les paramètres de la variabilité de l’intervalle RR en sommeil et à l’éveil ont aussi été comparés chez ces mêmes sujets. Aucune différence significative n’a été notée au niveau des index de la SBR entre le groupe d’insomniaques et celui des bons dormeurs, à l’éveil ou en sommeil. Cependant, on observe des valeurs légèrement plus faibles de la SBR chez les insomniaques ayant mal dormi (efficacité de sommeil (ES) < 85%) comparés aux insomniaques ayant bien dormi (ES≥ 85%) à la nuit expérimentale durant l’éveil et en sommeil. Par ailleurs, aucune différence n’a été notée entre le groupe d’insomniaques et celui des bons dormeurs au niveau des paramètres de la variabilité RR considérés (intervalle RR, PNN50, LF et HF en valeurs normalisées). En effet, les insomniaques tout comme les bons dormeurs semblent présenter une variation normale de l’activité autonome en sommeil, telle que représentée par les paramètres de la variabilité RR. Ces résultats préliminaires semblent suggérer que les mécanismes du baroréflexe sont préservés chez les sujets atteints d’insomnie primaire chronique tels que diagnostiqués de manière subjective. Cependant, il est possible qu’une altération des mécanismes du baroréflexe ne se révèle chez les insomniaques que lorsque les critères objectifs d’une mauvaise nuit de sommeil sont présents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes the results of a unique "natural experiment" of the operation and cessation of a broadcast transmitter with its short-wave electromagnetic fields (6-22 MHz) on sleep quality and melatonin cycle in a general human population sample. In 1998, 54 volunteers (21 men, 33 women) were followed for 1 week each before and after shut-down of the short-wave radio transmitter at Schwarzenburg (Switzerland). Salivary melatonin was sampled five times a day and total daily excretion and acrophase were estimated using complex cosinor analysis. Sleep quality was recorded daily using a visual analogue scale. Before shut down, self-rated sleep quality was reduced by 3.9 units (95% CI: 1.7-6.0) per mA/m increase in magnetic field exposure. The corresponding decrease in melatonin excretion was 10% (95% CI: -32 to 20%). After shutdown, sleep quality improved by 1.7 units (95% CI: 0.1-3.4) per mA/m decrease in magnetic field exposure. Melatonin excretion increased by 15% (95% CI: -3 to 36%) compared to baseline values suggesting a rebound effect. Stratified analyses showed an exposure effect on melatonin excretion in poor sleepers (26% increase; 95% CI: 8-47%) but not in good sleepers. Change in sleep quality and melatonin excretion was related to the extent of magnetic field reduction after the transmitter's shut down in poor but not good sleepers. However, blinding of exposure was not possible in this observational study and this may have affected the outcome measurements in a direct or indirect (psychological) way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The motivation for this thesis work is the need for improving reliability of equipment and quality of service to railway passengers as well as a requirement for cost-effective and efficient condition maintenance management for rail transportation. This thesis work develops a fusion of various machine vision analysis methods to achieve high performance in automation of wooden rail track inspection.The condition monitoring in rail transport is done manually by a human operator where people rely on inference systems and assumptions to develop conclusions. The use of conditional monitoring allows maintenance to be scheduled, or other actions to be taken to avoid the consequences of failure, before the failure occurs. Manual or automated condition monitoring of materials in fields of public transportation like railway, aerial navigation, traffic safety, etc, where safety is of prior importance needs non-destructive testing (NDT).In general, wooden railway sleeper inspection is done manually by a human operator, by moving along the rail sleeper and gathering information by visual and sound analysis for examining the presence of cracks. Human inspectors working on lines visually inspect wooden rails to judge the quality of rail sleeper. In this project work the machine vision system is developed based on the manual visual analysis system, which uses digital cameras and image processing software to perform similar manual inspections. As the manual inspection requires much effort and is expected to be error prone sometimes and also appears difficult to discriminate even for a human operator by the frequent changes in inspected material. The machine vision system developed classifies the condition of material by examining individual pixels of images, processing them and attempting to develop conclusions with the assistance of knowledge bases and features.A pattern recognition approach is developed based on the methodological knowledge from manual procedure. The pattern recognition approach for this thesis work was developed and achieved by a non destructive testing method to identify the flaws in manually done condition monitoring of sleepers.In this method, a test vehicle is designed to capture sleeper images similar to visual inspection by human operator and the raw data for pattern recognition approach is provided from the captured images of the wooden sleepers. The data from the NDT method were further processed and appropriate features were extracted.The collection of data by the NDT method is to achieve high accuracy in reliable classification results. A key idea is to use the non supervised classifier based on the features extracted from the method to discriminate the condition of wooden sleepers in to either good or bad. Self organising map is used as classifier for the wooden sleeper classification.In order to achieve greater integration, the data collected by the machine vision system was made to interface with one another by a strategy called fusion. Data fusion was looked in at two different levels namely sensor-level fusion, feature- level fusion. As the goal was to reduce the accuracy of the human error on the rail sleeper classification as good or bad the results obtained by the feature-level fusion compared to that of the results of actual classification were satisfactory.

Relevância:

20.00% 20.00%

Publicador: